Skip to main content
Log in

HYDRAULIC FRACTURING OF THICK-WALLED CYLINDRICAL BODIES

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article describes the experimental studies into hydraulic fracturing of thick-walled cylinders with a circular hole and made of cement-based GF-177 mixture. Limiting stresses are determined in four types of stress state of the bodies: uniaxial compression and tension, Brazilian Test and hydraulic fracturing. The data of the Brazilian Test and compression of rectangular parallelepipeds and circular cylinders were used to determine limiting pressure in hydraulic fracturing. The critical stress intensity factor is found. The calculated limiting pressures are compared with the values found analytically from the Lamé solution and with the test data. The influence of the storage interval on the strength is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Haimson, B.C., Scale Effects in Rock Stress Measurements, Scale Effects in Rock Masses, Proc. of the 1st Int. Workshop on Scale Effects in Rock Masses, Rotterdam, Brookfield, Balkema, 1990.

  2. Haimson, B.C. and Zhao, Z., Effect of Borehole Size and Pressurization Rate on Hydraulic Fracturing Breakdown Pressure, Rock Mechanics as a Multidisciplinary Science, Proc. of the 32nd US Symp., Norman, Rotterdam, Balkema, 1991.

  3. Cuisiat, F.D. and Haimson, B.C., Scale Effects in Rock Mass Stress Measurements, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992, vol. 29, no. 2, pp. 99–117.

  4. Suknev, S.V., Fracture of Quasi-Brittle Geomaterial with a Circular Hole under Nonuniformly Distributed Compression, J. Applied Mechanics and Technical Physics, 2019, vol. 60, no. 6, pp. 1115–1124.

  5. Suknev, S.V., Brittle and Quasi-Brittle Fracture of Geomaterials with Circular Hole in Nonuniform Compression, J. Min. Sci., 2020, vol. 56, no. 2, pp. 174–183.

  6. Whitney, J.M. and Nuismer, R.J., Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations, J. Compos. Mater., 1974, vol. 8, no. 3, pp. 253–265.

  7. Legan, M.A., Correlation of Local Strength Gradient Criteria in a Stress Concentration Zone with Linear Fracture Mechanics, J. Applied Mechanics and Technical Physics, 1993, vol. 34, no. 4, pp. 585–592.

  8. Legan, M.A., Determination of the Breaking Load and the Position and Direction of a Fracture Using the Gradient Approach, J. Applied Mechanics and Technical Physics, 1994, vol. 35, no. 5, pp. 750–756.

  9. Efimov, V.P., Rock Tests in Nonuniform Fields of Tensile Stresses,J. Applied Mechanics and Technical Physics, 2013, vol. 54, no. 5, pp. 857–865.

  10. Efimov, V.P., Tensile Strength of Rocks by Test Data on Disc-Shaped Specimens with a Hole Drilled through the Disc Center, J. Min. Sci., 2016, vol. 52, no. 5, pp. 878–884.

  11. Efimov, V.P., Features of Uniaxial Compression Failure of Brittle Rock Samples with Regard to Grain Characteristics, J. Min. Sci., 2018, vol. 54, no. 2, pp. 194–201.

  12. Filonenko-Borodich, M.M., Kurs soprotivleniya materialov. Tom 2 (Course on Strength of Materials. Volume II), Moscow: Gostekhizdat, 1949.

  13. Novikov, N.V. and Maistrenko, A.L., Crack Resistance of Crystalline and Composite Superhard Materials, Fiz. Khim. Mekh. Materialov, 1983, vol. 19, no. 5, pp. 46–53.

  14. Crouch, S. and Starfield, A., Boundary Element Methods in Solid Mechanics, London: George Allen & Unwin, 1983.

  15. Sheremet, A.S. and Legan, M.A., Application of Gradient Strength Criterion and the Boundary Element Method to a Plane Stress Concentration Problem, J. Applied Mechanics and Technical Physics, 1999, vol. 40, no. 4, pp. 774–750.

  16. Legan, M.A. and Blinov, V.A., Strength Analysis of Cylinders with a Hole when Using Boundary Element Method and Nonlocal Fracture Criteria, Vychisl. Mekh. Sploshn. Sred, 2017, vol. 10, no. 3, pp. 332–340.

  17. Blinov, V.A. and Legan, M.A., Hydraulic Fracturing of Cylindrical Concrete Bodies in a Non-Uniform Stress Field, J. of Physics, Conf. Series, 2019, vol. 1268, art. 012010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Larichkin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 5, pp. 8–20. https://doi.org/10.15372/FTPRPI20200502.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legan, M.A., Blinov, V.A., Demeshkin, A.G. et al. HYDRAULIC FRACTURING OF THICK-WALLED CYLINDRICAL BODIES. J Min Sci 56, 683–694 (2020). https://doi.org/10.1134/S1062739120057007

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120057007

Keywords

Navigation