Skip to main content
Log in

Contribution to Improve Water Process Recycling in the Flotation Plant of a Complex Zn-Pb-Cu Sulphide Ore

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

Moroccan Mining Company of Guemassa (MCG) produces from a complex sulphide ore three concentrates using Aerophine 3418A in the flotation circuits of galena and chalcopyrite and potassium amyl xanthate for sphalerite recovery. Water scarcity in the flotation plant area imposes to think of reducing fresh water use by recycling the tailing water process. Substitution of PAX by Aerophine 3418A in the zinc circuit will result in a tailing water process containing one kind of collector which could be easily controlled and recycled in the overall MCG plant. Optimizing and modeling study using experimental design methodology showed that the targeted substitution of PAX in MCG plant is possible: at flotation time of 5 min; 40 g/t of collector; 200 g/t of CuSO4 and pH of 12, Aerophine 3418A is more selective toward Fe than PAX. Zinc recovery reached 72% when flotation time was extended to 15 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mingli, Cao and Qi, Liu, Reexamining the Functions of Zinc Sulfate as a Selective Depressant in Differential Sulfide Flotation—the Role of Coagulation, J. Colloid and Interface Sci., 2006, vol. 301, pp. 523–531.

    Article  Google Scholar 

  2. Boulton, A., Fonasiero, D., and Ralston, J., Effect of Iron Content in Sphalerite on Flotation, J. Min. Eng., 2005, vol. 18, pp. 1120–1122.

    Article  Google Scholar 

  3. Chandra, A.P. and Gerson, A.R., A Review of the Fundamental Studies of the Copper Activation Mechanisms for Selective Flotation of the Sulfide Minerals, Sphalerite and Pyrite, Advances in Colloidal and Interface Science, 2009, vol. 145, nos. 1–2, pp. 97–110.

    Article  Google Scholar 

  4. Fornasiero, D. and Ralston, J., Effect of Surface Oxide/Hydroxide Products on the Collectorless Flotation of Copper-Activated Sphalerite, J. Min. Process., 2006, vol. 78, pp. 231–237.

    Article  Google Scholar 

  5. Chen, Jian-Hua, Chen, Ye, and Li, Yu-Qiong, Effect of Vacancy Defects on Electronic Properties and Activation of Sphalerite (110) Surface by First-Principles, Transactions of Nonferrous Metals Society of China, 2010, vol. 20, no. 3, pp. 502–506.

    Article  Google Scholar 

  6. Rao, S.R., Nesset, J.E., and Finch, J.A., Activation of Sphalerite by Cu Ions Produced by Cyanide Action on Chalcopyrite, J. Min. Eng., 2011, vol. 24, pp. 1025–1027.

    Article  Google Scholar 

  7. Rashchi, F., Sui, C., and Finch, J.A., Sphalerite Activation and Surface Pb Ion Concentration, J. Min. Process., 2002, vol. 67, pp. 43–58.

    Article  Google Scholar 

  8. Buswell, A.M. and Nicol, M.J., Some Aspects of the Electrochemistry of the Flotation of Pyrrhotite, J. Applied Electrochemistry, 2011, vol. 32, no. 12, pp. 1321–1329.

    Article  Google Scholar 

  9. Miller, J.D., Li, J., Davidtz, J.C., and Vos, F., A Review of Pyrrhotite Flotation Chemistry in the Processing of PGM Ores, 2005, vol. 18, pp. 855–865.

    Google Scholar 

  10. Allison, S.A. and O’Connor, C.T., An Investigation into the Flotation Behaviour of Pyrrhotite, J. Min. Process., 2011, vol. 98, pp. 202–207.

    Article  Google Scholar 

  11. Fuersteneau, M.C., Parekh, B.K., and Miller, J.D. (Eds), Froth Flotation: The First Ninety Years. In Advances in Flotation Technology, SME, 1999.

  12. Allison, S.A., Interactions between Sulphide Minerals and Metal Ions in the Activation, Deactivation and Depression of Mixed Sulphide Ores, Mintekreport, 1982, no. M29, pp. 1–31.

  13. Finkelstein, N.P., The Activation of Sulphide Minerals for Flotation: A Review, J. Min. Process., 1997, vol. 52, pp. 81–120.

    Article  Google Scholar 

  14. Kirjavainen, V., Scherithofer, N., and Heiskanen, K., Effect of Calcium and Thiosulfate Ions on Flotation Selectivity of Nickel-Copper Ores, J. Min. Eng., 2002, vol. 15, nos. 1–2, pp. 1–5.

    Google Scholar 

  15. Levay, G., R., St., Smart, C., and Skinner, W.M., The Impact of Water Quality on Flotation Performance, J. S. Afr. Inst. Min. Metall., 2001, vol. 101, no. 2, pp. 69–75.

    Google Scholar 

  16. Lui, L., Rao, S.R., and Finch, J.A., Laboratory Study Effect of Recycle Water on Flotation of a Cu/Zn Sulphide Ore, J. Min. Eng., 1993, vol. 6, no. 11, pp. 1183–1190.

    Article  Google Scholar 

  17. Boujounoui, K., Etude de l’Effet de la Composition Chimique de l’Eau sur la Flottation des Minerais Sulfurés Complexes: Cas de Draa Lasfar Sud (Maroc), Thesis, Université cadi Ayyad, Marrakech, Maroc, 2017.

  18. Abidi, A., El Amari, K., Bacaoui, A., and Yacoubi, A., Entrainment and True Flotation of a Natural Complex Ore Sulfide, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1061–1068.

    Article  Google Scholar 

  19. Boujounoui, K., Abidi, A., Baçaoui, A., El Amari, K., and Yaacoubi, A., Flotation Process Water Recycling Using Doehlert Experimental Design: Case of Draa Sfar Complex Sulphide Ore, Morocco, J. Mine Water and the Environment, 2017. DOI: https://doi.org/10.1007/s10230-017-0471-3.

  20. Chanturia, V.A., Ivanova, T.A., and Koporulina, E.V., Interaction of Sodium Diisobutyl Dithiophosphinate and Platinum in Aqueous Solutions and on Sulphide Surface, J. Min. Sci., 2009, vol. 45, no. 2, pp. 164–172.

    Article  Google Scholar 

  21. Hope, G.A., Woods, R., Boyd, S., and Watting, K., A Spectroelectrochemical Investigation of the Interaction of Diisobutyldithiophosphinate with Copper, Silver and Gold Surfaces: I. Raman and NMR Spectra of Diisobutyldithiophosphinate Compounds, Colloids and Surfaces, A Physicochem. Eng. Aspects, 2003, vol. 214, nos. 1–3, pp. 77–85.

    Article  Google Scholar 

  22. Pecina-Trevińo, E.T., Uribe Salas, A., Nava-Alonso, F., and Pérez-Garibay, R., On the Sodium-Diisobutyl Dithiophosphinate (Aerophine 3418A) Interaction with Activated and Unactivated Galena and Pyrite, J. Min. Process., 2003, vol. 71, nos. 1–4, pp. 201–217.

    Article  Google Scholar 

  23. Mathieu, D., Nony, J., and Phan Tan Luu, R., Software Nemrodw, LPRAI-Marseille, France.

  24. Aslan, N. and Fidan, R., Optimization of Pb Flotation Using Statistical Technique and Quadratic Programming, J. Separation and Purification Tech., 2008, vol. 62, pp. 160–165.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the managers, technicians and agents of the Moroccan Mining Company of Guemassa (MCG) and the Research Center Reminex for their support, availability and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. El Amari.

Additional information

Published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2019, No. 4, pp. 157–165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, A., Boujounoui, K., El Amari, K. et al. Contribution to Improve Water Process Recycling in the Flotation Plant of a Complex Zn-Pb-Cu Sulphide Ore. J Min Sci 55, 658–667 (2019). https://doi.org/10.1134/S1062739119046014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739119046014

Keywords

Navigation