Journal of Mining Science

, Volume 53, Issue 4, pp 655–662 | Cite as

Gas Content and Structure of Coal in Donets Basin

  • E. V. Ul’yanova
  • O. N. Malinnikova
  • A. V. Burchak
  • A. K. Balalaev
  • V. I. Baranovsky


The integrated study of coal is performed using methods of optical and electron paramagnetic resonances, infrared spectroscopy and Raman spectroscopy. It is found that gas content of coal is governed by the rank of coal and its material constitution as well as by the coal bed structure at the macro-, micro- and nano-levels which interwork. It is discovered that the size and amount of bubbles, of paleo-origin presumably, and the content of coalbed methane are related. The influence of each scale level of the coal bed structure on the gas content is revealed. The authors illustrate benefits of the integrated study of gasbearing coal with the physical methods that complement one the other at different levels of coal structure.


Fossil coal rank gas content paleo-bubbles structure spectroscopy methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malyshev, Yu.N., Airuni, A.T., and Kulikova, E.Yu., Fiziko-khimicheskie protsessy pri dobyche poleznykh iskopaemykh i ikh vliyanie na sostoyanie okruzhayushchei sredy (Physical and Chemical Processes in Mining and Their Effects on the Environment), Moscow: AGN, 2002.Google Scholar
  2. 2.
    Airuni, A.T., Teoriya i praktika bor’by s rudnichnymi gazami na bol’shikh glubinakh (Theory and Practice of Deep-Level Mine Gas Prevention), Moscow: Nedra, 1981.Google Scholar
  3. 3.
    Zaidenvarg, V.E., Airuni, A.T., and Zaburdyaev, V.S., New Methods of Drainage of Coal Beds under Mining, Ugol’, 1993, no. 3, pp. 20–24.Google Scholar
  4. 4.
    Ivanov, B.M., Feit, G.N., and Yanovskaya, M.F., Mekhanicheskie i fiziko-khimichskie svoistva uglei vybrosoopasnykh plastov (Mechanical and Physicochemical Properties of Outburst-Hazardous Coal Beds), Moscow: Nauka, 1979.Google Scholar
  5. 5.
    Feit, G.N. and Malinnikova, O.N., Causes of Higher Methane Release under Coal and Gas Outbursts in Mines, GIAB. Metan, 2008, pp. 206–211.Google Scholar
  6. 6.
    Malinnikova, O.N., Odintsev, V.N., and Trofimov, V.A., Estimating Conditions of Methane Recovery from Coal at Micro-Level, GIAB Special Issue, 2009, no. 11, pp. 189–204.Google Scholar
  7. 7.
    Airuni, A.T., Galazov, R.A., Sergeev, I.V., Kaledin, N.V., Zen’kovich, L.M., Bobin, V.A., and Zaburdyaev, V.S., Gazoobil’nost’ kamenougol’nykh shakht SSSR. Kompleksnoe osvoenie gazonosnykh ugol’nykh mestorozhdenii (Gas Content of Coal Mines in USSR. Integrated Development of Gas-Bearing Coal Fields), Moscow: Nauka, 1990.Google Scholar
  8. 8.
    Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy metana ugol’nykh plastov (Fundamental and Applied Methods for the Solution of Coal-Bed Methane Problems), Moscow: AGN, 2000.Google Scholar
  9. 9.
    Trufanov, V.N., Gamov, M.I., Rylov, V.G., Maisky, Yu.G., and Trufanov, A.V., Uglevodorodnaya fluidizatsiya iskopaemykh uglei Vostochnogo Donbassa (Hydrocarbon Fluidization of Coal in East Donbass), Rostov-on-Don: Rostov. Univ., 2004.Google Scholar
  10. 10.
    Ruban, A.D., Zaburdyaev, V.S., and Zaburdyaev, G.S., Otsenka resursov i ob’emov isvlecheniya metana pri podzemnoi razrabotke ugol’nykh mestorozhdenii Rossii (Assessment of Methane Resources and Recovery in Underground Coal Mining in Russia), Moscow: IPKON RAN, 2005.Google Scholar
  11. 11.
    Karkashadze, G.G., Alekseev, A.D., Starikov, G.P., Vasil’kovsky, V.A., and Spozhakin, A.I., Improvement of the Technique for Load Calculation for a Mining Face Taking into Account Methane Pressure in a Coal Bed, Gorny Zh., 2009, no. 4, pp. 47–50.Google Scholar
  12. 12.
    Alekseev, A.D., Fizika uglya i gornykh protsessov (Physics of Coal and Mine Processes), Kiev: Naukova Dumka, 2010.Google Scholar
  13. 13.
    Alexeev, A.D., Ulyanova, E.V., Kalugina, N.A., and Degtyar, S.E., Phase Transitions in the Coal-Water-Methane System, Condensed Matter Physics, 2006, vol. 9, no. 1(45), pp. 109–114.CrossRefGoogle Scholar
  14. 14.
    Alekseev, A.D., Ul’yanova, E.V., and Vasilenko, T.A., NMR Potential for Studying Physical Processes in Fossil Coals, Uspekh. Fiz. Nauk, 2005, vol. 175, no. 11, pp. 1217–1232.CrossRefGoogle Scholar
  15. 15.
    Shepeleva, S.A., Dyrdin, V.V., Kim, T.l., Smirnov, V.G., and Gvozdikova, T.M., Metan i vyrbosoopasnost’ ugolnykh plastov (Methane and Outburst Hazard of Coal Beds), Tomsk: TGU, 2015.Google Scholar
  16. 16.
    Bulat, A.F., Mineev, S.P., and Prusova, A.A., Generating Methane Adsorption under Relaxation of Molecular Structure of Coal, J. Min. Sci., 2016, vol. 52, no. 1, pp. 70–77.CrossRefGoogle Scholar
  17. 17.
    Alexeev, A.D., Feldman, E.P., and Vasilenko, T.A., Methane Desorption from a Coal-Bed, Fuel, 2007, vol. 86, no. 16, pp. 2547–2580.CrossRefGoogle Scholar
  18. 18.
    Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N., Nonlinear Deformation–Wave Processes in Various Rank Coal Specimens Loaded to Failure under Varied Temperature, J. Min. Sci., 2015, vol. 51, no. 4, pp. 641–658.CrossRefGoogle Scholar
  19. 19.
    Oparin, V.N., Vostrikov, V.I., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N., Measuring Equipment and Test Bench to Control Evolution of Acoustic-Emission and Heat Fields Induced in Solids under Failure by Fluids, J. Min. Sci., 2015, vol. 51, no. 3, pp. 624–633.CrossRefGoogle Scholar
  20. 20.
    Oparin, V.N. and Skitsky, V.A., Initiation of Processes Ending with Coal and Gas Outbursts, Gorn. Prom., 2012, no. 5(105), pp. 56–58.Google Scholar
  21. 21.
    Ul’yanova, E.V., Malinnikova, O.N., Dolgova, M.O., Zverev, I.V., Burchak, A.V., Molchanov, A.N., and Pichka, T.V., Structure and Methane Content of Fossil Coal, Solid Fuel Chemistry., 2016, vol. 50, no. 4, pp. 207–212.CrossRefGoogle Scholar
  22. 22.
    Ul’yanova, E.V., Molchanov, A.N., Burchak, A.V., Balalaev, A.K., Baranovsky, V.I., and Grinev, V.V., Possibilities of the Complex Investigation of Structure and Methane Content of Coals of the Donets Basin, Gornospasat. Delo: Sb. Nauch. Tr. NIIGD, 2013, issue 50, pp. 34–43.Google Scholar
  23. 23.
    Lukinov, V.V., Pimonenko, L.I., Baranovsky, V.I., Gunya, D.P., and Tkachenko, A.V., Petrographical and Physical Characteristics of Coal in Kink Bands, Ugol’ Ukrainy, 2012, no. 2, pp. 36–38.Google Scholar
  24. 24.
    Alekseev, A.D., Zaidenvarg, V.E., Sinolitsky, V.V., and Ul’anova, E.V., Radiofizika v ugol’noi promyshlennosti (Radiophysics in Coal Mining Industry), Moscow: Nedra, 1992.Google Scholar
  25. 25.
    Burchak, A.V., Paramagnatic Properties of Coal as Substance Condition Indicators, Geotekh. Mekh.: Sb. Nauch. Tr. Inst. Geotekh. Mekh. Polyakova NAN Ukrainy, 2010, issue 88, pp. 40–45.Google Scholar
  26. 26.
    Ferrari, A.C. and Robertson, J., Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107.CrossRefGoogle Scholar
  27. 27.
    Ulanova, E.V., Molchanov, A.N., Prokhorov, I.Y., and Grinyov, V.G., Fine Structure of Raman Spectra in Coals of Different Rank, Intern. J. Coal Geology, 2014, vol. 121, pp. 37–43.CrossRefGoogle Scholar
  28. 28.
    Antsiferov, A.V., Tirkel’, M.G., Khokhlov, M.T., Privalov, V.A., Golubev, A.A., Maiboroda, A.A., and Antsiferov, V.A., Gzonosnost’ ugol’nykh mestorozhdenii Donbassa (Coal Field Gas-Content in Donbass), Kiev: Naukova Dumka, 2004.Google Scholar
  29. 29.
    Van Krevelen, D.W., Coal–Typology, Chemistry, Physics, Constitution, Amsterdam: Elsevier, 1993.Google Scholar
  30. 30.
    Rus’yanova, N.D., Uglekhimiya (Coal Chemistry), Moscow: Nauka, 2003.Google Scholar
  31. 31.
    Butakova, V.I., Polyene Model of Coal Structure, Coke and Chemistry, 2015, vol. 58, no. 4, pp 129–137.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Ul’yanova
    • 1
  • O. N. Malinnikova
    • 1
  • A. V. Burchak
    • 2
  • A. K. Balalaev
    • 2
  • V. I. Baranovsky
    • 2
  1. 1.Academician Melnikov Institute of Integrated Mineral Development—IPKONRussian Academy of SciencesMoscowRussia
  2. 2.Polyakov Institute of Geotechnical MechanicsNational Academy of Sciences of UkraineDnepr (Dnepropetrovsk)Ukraine

Personalised recommendations