Advertisement

Journal of Mining Science

, Volume 53, Issue 3, pp 591–597 | Cite as

Geoinformation Modeling of Sulfide Frost Weathering in the Area of Udokan Deposit

  • V. A. Abramova
  • A. V. Parshin
  • A. E. Budyak
  • A. P. Ptitsyn
Mining Ecology

Abstract

The developed geoinformation technology based on the experimental and computer-aided physicochemical modeling enables quantitative calculation and mapping of aftereffects of geochemical processes in sulfide material dumps in terms of Udokan copper deposit. The role of nitrogen as a component of acid rains is emphasized together with its effect on chemical weathering of sulfides. The authors report modeling and testing data on oxidative leaching of Udokan sulfide ore using nitrogen compounds. The classical and geoinformation approaches to calculating leakage flux being of importance for exploration and geoecology studies in permafrost are compared. The obtained results on intensification of sulfide oxidation under conditions of permafrost allow estimating potential environmental impact of the planned mining operations at Udokan deposit and can be used to improve the current cryo-geotechnologies of metal ore mining.

Keywords

Kodaro-Udokan area sulfide deposits nitrogen compounds permafrost leakage flux element mobility physicochemical modeling experiment geoinformation technologies cryo-geotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    URL: http://www.bgk-udokan.ru/ (Reference data: Febr. 15, 2017), Baikal’skaya Gornaya KompaniyaGoogle Scholar
  2. 2.
    Ptitsyn, A.B., Zaman, L.V., Yurgenson, G.A., et al., Udokan: geologiya, rudogenez usloviya osvoeniya (Udokan: Geology, Ore Genesis and Mining Conditions), Novosibirsk: Nauka, 2003.Google Scholar
  3. 3.
    Report on Ecological and Social Appraisal of Udokan Project [Electronic resource], 2010. Access mode: URL: http://www.bgk-udokan.ru, Social responsibility (Reference date: April 24, 2014).Google Scholar
  4. 4.
    Trubachev, A.I., Sekisov, A.G., Salikhov, V.S., and Manzyrev, D.V., Commercial Components in Cupriferous Sandstone Ores of the Kodar-Udokan Zone (Eastern Transbaikalia) and Their Extraction Technologies, Sibir. Otdelen. Sekt. Nauk o Zem., Geolog. Razved. Mestorozhd., 2016, no. 1 (54), pp. 9–19.Google Scholar
  5. 5.
    Oparin, V.N., Freidin, A.M., Tapsiev A.P., and Filippov, P.A., Hard Mineral Mining and Raw Material Supply in Russia: Current State and the Challenges, J. Min. Sci., 2013, vol. 49, no. 4, pp. 670–676.CrossRefGoogle Scholar
  6. 6.
    Chanturia, V.A., Makarov, V.N., and Makarov, D.V., Engineering Ecology: Specific Features of Supergene Processes in Stockpiled Industrial Mine Wastes, Engin. Ecologia, 1999, no. 4, pp. 2–9.Google Scholar
  7. 7.
    Bortnikova, S.B., Gas’kova, O.L., and Bessonova, E.P., Geokhimiya tekhnogennykh sistem (Geochemistry of Technogenic Systems), Novosibirsk: Geo, 2006.Google Scholar
  8. 8.
    Makarov, D.V., Mazukhina, S.I., Nesterova, A.A., Nesterov, D.P., and Masloboev, V.A., Experimental Study and Thermodynamic Modeling of Supergene Processes in Tailings of Copper-Nickel Ores, Proc. Mineralogy of Technogenesis-2007, MIASS: Inst. Mineral., Ural Otd. RAN, 2007, pp. 146–164.Google Scholar
  9. 9.
    Zvereva, V.P., Ekologicheskie posledstviya gipergennykh protsessov na olovorudnykh mestorozhdeniyakh Dal’nego Vostoka (Ecological Subsequences of Hypergene Processes at Tin Deposits of the Far East), Vladivostok: Dal’nauka, 2008.Google Scholar
  10. 10.
    Masloboev, V.A., Seleznev, S.G., Makarov, D.V., and Svetlov, A.V., Assessment of Ecohazard of Copper-Nickel Ore Mining and Processing Waste, J. Min. Sci., 2014, vol. 50, no. 3, pp. 559–572.CrossRefGoogle Scholar
  11. 11.
    Grekhnev, N.I. and Lipina, L.N., Peculiarities of Geochemical Oxidation Reactions in Hypergenesis Zone under Southern Far East Climate Conditions, J. Min. Sci., 2014, vol. 50, no. 4, pp. 809–813.CrossRefGoogle Scholar
  12. 12.
    Markovich, T.I. and Ptitsyn, A.B., Uncontrollable Acid Leaching of Heavy Metals from Sulfide Dumps, Khimiya v Interesakh Ust. Razvitiya, 1998, no. 5, pp. 349–354.Google Scholar
  13. 13.
    Graedel, T.E., Benkovitz, C.M., and Keene, W.L., Global Emission Inventories of Acid–Related Compounds, Water, Air, Soil Pollut., 1995, vol. 85, pp. 25–36.CrossRefGoogle Scholar
  14. 14.
    Abramova, V.A., Geoinformation and Physicochemical Modeling of Geological-Geochemical Processes Running in Sulfide Deposits in Permafrost Zone, Thesis of Cand. Geol.-Min. Sci., Irkutsk, 2015.Google Scholar
  15. 15.
    Abramova, V.A., Parshin, A.V., and Budyak, A.E., Physical and Chemical Modeling of the Influence of Nitrogen Compounds on the Course of Geochemical Processes in the Cryolithozone, Kriosfera Zemli, 2015, vol. IX, no. 3, pp. 32–37.Google Scholar
  16. 16.
    Ptitsyn, A.B., Markovich, T.I., Pavlyukova, V.A., and Epova, E.S., Geokhimiya kriogennykh zon okisleniya (Geochemistry of Oxidation in Permafrost Zones), Novosibirsk: Nauka, 2009.Google Scholar
  17. 17.
    Ptitsyn, A.B., Geokhimicheskie osnovy geotekhnologii metallov v usloviyakh merzloty (Geochemical Fundamentals of Metal Geotechnology in Prermafrost Conditions), Novosibirsk: Nauka, 1992.Google Scholar
  18. 18.
    Parshin, A.V. and Spiridonov, A.M., Methodical and Engineering Solutions of Geological and Geochemical GIS for Integrated Scientific Studies of Gold-Ore Objects, Geol. Miner. Syr’evye Res. Sibiri, 2014, no. 3c-2, pp. 72–76.Google Scholar
  19. 19.
    Plyukhin, B.V., Udokan: klimaticheskie kharakteristiki i okhrana atmosfery (Udokan: Climatic Characteristics and Atmosphere Protection), Novosibirsk: Nauka, 1990.Google Scholar
  20. 20.
    Gosudarctvenny doklad o sostoyanii i okhrane okruzhayushchei sredy v Zabaikal’skom krae za 2008–2009 gg (Public Report on State and Protection of Transbaikalia Environment in 2008–2009), Chita: Natural resource and Ecology Ministry, Transbaikalia, Tansbaikalia State Univ., 2011.Google Scholar
  21. 21.
    Nedeshev, A.A., Faleichik, A.A., and Faleichik, L.M., Mathematical Modeling of Atmosphere Pollution near Udokan, Geogr. Prir. Resurs., 2001, no. 3, pp. 114–120.Google Scholar
  22. 22.
    Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoria, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications), Novosibirsk: GEO, 2010.Google Scholar
  23. 23.
    Bychinsky, V.A., Kostyanetskaya, Zh.V., Chudnenko, K.V., Tupitsyn, A.A., and Sidorov, Yu.I., Techniques for the Calculation of Consistent Low-Temperature Thermodynamic Data for Compounds, Geochemistry International, 2008, vol. 46, no. 2, pp. 182–186.CrossRefGoogle Scholar
  24. 24.
    Romanov, V.A., Material Leakage Flows from Land Mass and Aqueous Migration of Elements, Otechestv. Geologiya, 2002, nos. 5–6, pp. 46–50.Google Scholar
  25. 25.
    Posobie po gidravlicheskim raschetam malykh mostov i vodopropusknykh trub na zheleznykh i avtomobil’nykh dorogakh (Manual on Hydraulic Computation of Small-Scale Bridges and Water Portholes in Railway and Autobahns), Moscow: Transport, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Abramova
    • 1
  • A. V. Parshin
    • 2
  • A. E. Budyak
    • 2
  • A. P. Ptitsyn
    • 1
  1. 1.Institute of Natural Resources, Ecology and Cryology, Siberian BranchRussian Academy of SciencesChitaRussia
  2. 2.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations