Journal of Mining Science

, Volume 53, Issue 2, pp 367–376 | Cite as

Mining pollution control using biogrouting

  • Ramin Doostmohammadi
  • Maryam Olfati
  • Forouzan Ghasemian Roodsari
Mining Ecology


The wind-induced dispersion of waste materials from mining operations results in the dust accumulation around mines, which in turn lead to negative environmental and economical impacts. In addition, the oxidation of sulphidic minerals extracted from mines promotes the creation of sulphuric acid which subsequently promotes the release of a whole range of metals. As a result, Acid Mine Drainage (AMD) contains high concentrations of acid and dissolved metals. When this toxic mixture flows into groundwater, streams and rivers, it gives rise to several environmental problems. Here, in this paper, we investigate the stability and permeability of the sulfide soil in the Angouran mine, the largest lead and zinc mine in the Middle East, by employing a biological process, biogrouting. Angouran mine is subject to a considerable amount of AMD production due to the water penetration in the soil, which is largely deposited by the dust produced from the mine and storage factories. Biogrouting method exploits bacterial hydrolysis to form calcium carbonate. Consequently, calcium carbonate sediments in the form of cement and consolidates the soil. Our findings show that the soil is stabilized through the inhibition of dust dispersion by biogrouting. The biogrout prevents the protrusion of water inside depots and decelerates the formation and protrusion of acidic drainage and latex consisting of heavy metals into the ground.


Mine pollution dust diffusion acid mine drainage urease bacteria biogrouting soil stabilizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrie, L.A., Gregor D., Hargrave B., Lake R., Muir D., and Shearer R., Arctic contaminants—Sources, occurrence and pathways, Sci. Total Environ., 1992, Vol.122.Google Scholar
  2. 2.
    Lacerda, L.D., Global mercury emissions from gold and silver mining, Water Air Soil Pollut. 1997, Vol.97.Google Scholar
  3. 3.
    Kolpin, D.W., Barbash J.E., and Gilliom R.J., Occurrence of pesticides in shallow groundwater of the United States: initial results from the National water-quality assessment program, Environ. Sci. Technol., 1998, Vol.32.Google Scholar
  4. 4.
    Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G., et al., Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton Inquiry, J. Toxicol. Environ. Health A., 2002, Vol.65.Google Scholar
  5. 5.
    Driscoll, C.T., Whitall, D., Aber, J., Boyer, E., Castro, M., and Cronan, C., Nitrogen pollution in the Northeastern United States: Sources, effects, and management options, Bioscience, 2003, Vol.53.Google Scholar
  6. 6.
    Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K., Zhang, Q., and Salcedo, D., Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected, Geophys. Re.s Lett., 2006, vol, 33, L17811.CrossRefGoogle Scholar
  7. 7.
    Ericson, B., Hanrahan, D., and Kong, V., The world’s Worst Pollution Problems: Top Ten of the Toxic Twenty, New York: Blacksmith Institute, 2008.Google Scholar
  8. 8.
    McCartor, A. and Becker, D., Top six toxic threats, World’s Worst Pollution Problems Report 2010, New York: Blacksmith Institute, 2010.Google Scholar
  9. 9.
    Meza-Figueroa, D., Maier, R.M., de la O-Villanueva, M., Gomez-Alvarez, A., Moreno-Zazueta, A., Rivera, J., et al., The impact of unconfined mine tailings in residential areas from a mining town in a semiarid environment: Nacozari, Sonora, Mexico, Chemosphere, 2009, Vol.77.Google Scholar
  10. 10.
    Brotons, J.M., Diaz, A.R., Sarria, F.A., and Serrato, F.B., Wind erosion on mining waste in southeast Spain, Land Degrad. Dev., 2010, Vol.21.Google Scholar
  11. 11.
    Csavina, J., Landázuri, A., Wonaschütz, A., Rine, K., Rheinheimer, P., and Barbaris, B., Metal and metalloid contaminants in atmospheric aerosols from mining operations, Water Air Soil Pollut., 2011, Vol.221.Google Scholar
  12. 12.
    Corriveau, M.C., Jamieson, H.E., Parsons, M.B., Campbell, J.L., and Lanzirotti, A., Direct characterization of airborne particles associated with arsenic-rich mine tailings: particle size, mineralogy and texture, Appl. Geochem., 2011, Vol.26.Google Scholar
  13. 13.
    Ravi, S., D'Odorico, P., Breshears, D.D., Field, J.P., Goudie, A., and Huxman, T.E., Aeolian processes and the biosphere: Interactions and feedback loops, Rev. Geophys., 2011, Vol. 49, RG3001.CrossRefGoogle Scholar
  14. 14.
    Middleton, N., Goudie, A., and Wells, G., Aeolian Geomorphology, Boston: Allen and Unwin, 1986.Google Scholar
  15. 15.
    Tegen, I. and Fung, I., Contribution to the atmospheric mineral aerosol load from land-surface modification, J. Geophys. Res. Atmos., 1995, Vol.100.Google Scholar
  16. 16.
    Csavina, J., Field, J., Taylor, M., Gao, S., Landázuri, A., Betterton, E., and Sáez, A.E., A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations, Science of the Total Environment, 2012, Vol.433.Google Scholar
  17. 17.
    Ojelede, M.E., Annegarn, H.J., and Kneen, M.A., Evaluation of aeolian emissions from gold mine tailings on the Witwatersrand, Aeolian Research, 2012, Vol.3.Google Scholar
  18. 18.
    Akcil, A. and Koldas, S., Acid Mine Drainage (AMD): causes, treatment and case studies, J. Clean Prod., 2006, Vol.14.Google Scholar
  19. 19.
    Liang-qi, L., Ci-an, S., Xiang-li, X., Yan-hong, L., and Fei, W., Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia), Transactions of Nonferrous Metals Society of China, 2010, Vol.20.Google Scholar
  20. 20.
    Fripp, J., Ziemkiewicz, P.F., and Charkavork, H., Acid mine drainage treatment–technical notes collection, Report ERDC TN-EMRRPSR-14, Army Engineer Research and Development Centre, Vicksburg, 2000.Google Scholar
  21. 21.
    Gaikwad, R.W. and Gupta, D.V., Review on removal of heavy metals from acid mine drainage, Appl. Ecol. Environ. Res., 2008, Vol. 6 (3).Google Scholar
  22. 22.
    Jennings, S.R., Neuman, D.R., and Blicker, P.S., Acid Mine Drainage and The Effects on Fish Health And Ecology: A Review, Reclamation Research Publication, Bozeman, 2008.Google Scholar
  23. 23.
    Taylor, J., Pape, S., and Murphy, N., A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD), 5th Australian Workshop on Acid Mine Drainage, Fremantle, Australia, 2005.Google Scholar
  24. 24.
    Peppas, A., Komnitsas, K., and Halikia, I., Use of organic covers for acid mine drainage control, Minerals Engineering, 2000, Vol. 13(5).Google Scholar
  25. 25.
    Chapman, A., Acid mine drainage in South Africa: An emerging environmental problem, Institute for Futures Research, Stellensbosch, 2011.Google Scholar
  26. 26.
    Coetzee, H., Hobbs, P.J., Burgess, J.E., Thomas, A., Keet, M., Yibas, B., van Tonder, D., Netili, F., Rust, V., Wade, P., and Maree, J., Mine Water Management in the Witwatersrand Goldfields with Special Emphasis on Acid Mine Drainage: Report to the Interministerial Committee on Acid Mine Drainage, Council for Geoscience, Pretoria, 2010.Google Scholar
  27. 27.
    Johnson, D.B. and Hallberg, K.B., The microbiology of acidic mine waters, Res. Microbiol., 2003, Vol. 154 (7).Google Scholar
  28. 28.
    Nieto, j.M., Sarmiento, A.M., Olías, M., Canovas, C.R., Riba, I., Kalman, J., and Delvalls, T.A., Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary, Environment International, 2007, Vol33.Google Scholar
  29. 29.
    Silveira, A.N., Silva, R., and Rubio, J., Treatment of acid mine drainage (AMD) in South Brazil: comparative active processes and water reuse, Int. J. Miner. Process., 2009, Vol.93.Google Scholar
  30. 30.
    Watten, B.J., Sibrell, P.L., and Schwartz, M.F., Acid neutralization within limestone sand reactors receiving coal mine drainage, Environ. Poll., 2005, Vol.137.Google Scholar
  31. 31.
    Gitari, W.M., Petrik, L.F., Etchebers, O., Key, D.L., Iwuoha, E., and Okujeni, C., Passive neutralisation of acid mine drainage by fly ash and its derivatives: a column leaching study, Fuel, 2008, Vol.87.Google Scholar
  32. 32.
    Ríos, C.A., Williams, C.D., and Roberts, C.L., Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites, J. Hazard. Mater., 2008, Vol.156.Google Scholar
  33. 33.
    Castillo, P.L., Quispe, D., and Nieto, J.M., Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste, J. Hazard. Mater., 2010, Vol.177.Google Scholar
  34. 34.
    Mohan, D. and Chander, S., Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent, J. Hazard. Mater., 2006, Vol.137.Google Scholar
  35. 35.
    Ivanov, V. and Chu, J., Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Rev. Environ. Sci. Biotechnol., 2008, Vol.7.Google Scholar
  36. 36.
    Fujita, Y., Ferris, F.G., Lawson, R.D., Colwell, F.S., and Smith, R.W., Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria, Geomicrobiol. J., 2000, Vol.17.Google Scholar
  37. 37.
    Vandevivere, P. and Baveye, P., Relationship between transport of bacteria and their clogging efficiency in sand columns, Appl Environ Microbiol., 1992, Vol.58.Google Scholar
  38. 38.
    Ferris, F.G., Phoenix, V., Fujita, Y., and Smith, R.W., Kinetics of calcite precipitation induced by ureolytic bacteria at 10–20°C in artificial groundwater, Geochim. Cosmochim. Acta, 2003, Vol.67.Google Scholar
  39. 39.
    De Muynck, W., De Belie, N., and Verstraete, W., Microbial carbonate precipitation in construction materials: A review, Ecol. Eng., 2010, Vol.36.Google Scholar
  40. 40.
    Hammes, F., Boon, N., De Villiers, J., Verstraete, W., Siciliano, S.D., Strain-specific ureolytic microbial calcium carbonate precipitation, Appl. Environ. Microbiol., 2003, Vol.69.Google Scholar
  41. 41.
    Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van der Meeren, P., De Belie, N., and Verstraete, W., Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 2006, Vol.17.Google Scholar
  42. 42.
    Ercole, C., Cacchio, P., Botta, A.L., Centi, V., and Lepidi, A., Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides, Microsc. Microanal., 2007, Vol.13.Google Scholar
  43. 43.
    Kaltwasser, H., Kramer, J., and Conger, W.R., Control of urease formation in certain aerobic bacteria, Arch. Microbiol., 1972, Vol.81.Google Scholar
  44. 44.
    Nemati, M. and Voordouw, G., Modification of porous media permeability using calcium carbonate produced enzymatically in situ, Enzyme Microb. Technol., 2003, Vol.33.Google Scholar
  45. 45.
    Behbahani, S., Moarefvand, P., Ahangari, K., and Goshtasbi, K., Unloading scheme of angooran mine slope by discrete rlement modeling, Int. J. Rock Mech. Min. Sci., 2013, Vol.64.Google Scholar
  46. 46.
    Moarefv, P., Ahmadi, M., and Afifipour, M., Unloading Scheme to Control Sliding Mass at Angouran Open Pit Mine, Iran, Harmonising, Rock Engineering and the Environment, Qian, Zhou (Eds.), London: Taylor & Francis, 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Ramin Doostmohammadi
    • 1
  • Maryam Olfati
    • 2
  • Forouzan Ghasemian Roodsari
    • 3
  1. 1.Mining Engineering DepartmentUniversity of ZanjanZanjanIran
  2. 2.Department of Environmental Science, Bafgh BranchIslamic Azad UniversityBafghIran
  3. 3.Department of Biology, Bafgh BranchIslamic Azad UniversityBafghIran

Personalised recommendations