Skip to main content
Log in

Numeric Evaluation of Kinematic and Dynamic Characteristics of Mineral Treatment in Disintegrator

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

The numerical modeling provides a holistic picture of mechanical treatment and activation of substances in a disintegrator. The authors calculate kinematic and dynamic characteristics of elastic and inelastic collisions in terms of halite, quartz and sulfur particles and disintegrator fingers. The recommendations on selecting optimal treatment conditions for natural minerals and waste material in order to dissociate mineral concretions and for selective activation of minerals are given. The research findings can partly be used for other types of percussion disintegrating devices, in particular, jet mills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusupov, T.S., Improvement of Dissociation of Rebellious Minerals, J. Min. Sci., 2016, vol. 52, no. 3, pp. 559–564.

    Article  Google Scholar 

  2. Yusupov, T.S., Baksheeva, I.I., and Rostovtsev, V.I., Analysis of Different-Type Mechanical Effects on Selectivity of Mineral Dissociation, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1248–1253.

    Article  Google Scholar 

  3. Yusupov, T.S., Urakaev F. Kh., and Yusupov, V.P., Prediction of Structural−Chemical Change in Minerals under Mechanical Impact during Milling, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1034–1040.

    Article  Google Scholar 

  4. Yusupov, T.S., Control of Mineral Structure Imperfections as a Way to Improve Ore Flotation, Ekologiya Razvitie Obshchestva, 2015, no. 3(14), pp. 31–37.

    Google Scholar 

  5. Pravdina, M.Kh., Vortex Mill to Grind Brittle and Plastic Materials, in Gol’shtik, M.A., Protsessy perenosa v zernistom sloe (Transitions in a Granular Layer), 2 ed., Novosibirsk: Kutateladze Termofiz. Inst. SO RAN, 2005, pp. 315–358.

    Google Scholar 

  6. Shevchenko, V.S., Laptev, Yu.V., Shestakova, R.D., Kolonin, G.R. Petrushin, E.I., Savintsev, Yu.P., Yusupov, T.S., and Urakaev F. Kh., Influence of Activating Grinding in a Disintegrator on Opening and Enrichment of Talnakhsky Valleriite-Containing Ore, Khim. Interes. Ustoich. Razv. 2007, vol. 15, nos. 2−1, pp. 215–223.

    Google Scholar 

  7. Laptev, Yu.V., Shevchenko, V.S., and Urakaev, F.Kh., Sulphidation of Valleriite in SO2 Solutions, Hydrometallurgy, 2009, vol. 98, nos. 3−4. pp. 201–205.

    Article  Google Scholar 

  8. Bowden, F.P. and Persson, P.A. Deformation, Heating and Melting of Solids in High-Speed Friction, Proc. Roy. Soc. Lond. A., 1961, vol. 260, no. 1303, pp. 433–458.

    Article  Google Scholar 

  9. Kleis, I.R. and Uuemyis, Kh.Kh., Iznosostoikost’ elementov izmel’chitelei udarnogo deistviya (Abrasion Resistance of Percussion Disintegrator Components), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  10. Urakaev, F.Kh., Mechanodestruction of minerals at crack tip (Overview): 1. Experiment, Physics and Chemistry of Minerals, 2007, vol. 34, no. 5, pp. 351–361.

    Article  Google Scholar 

  11. Planiol’, R., Vacuum Centrifugal Mill, Proc. Symposion Zerkleinern RuMoRGB, Moscow: Stroiizdat, 1966, pp. 473–483.

    Google Scholar 

  12. Urakaev, F.Kh., Zhogin, I.L., and Goldberg, E.L., Process for Particle Treatment in Disintegrator, Izv. SO RAN SSSR, Ser. Khim. Nauki, 1985, no. 8, issue 3, pp. 124–131.

    Google Scholar 

  13. Zhogin, I.L. and Urakaev, F.Kh., Particle Motion in a Disintegrator, Izv. SO RAN SSSR, Ser. Khim. Nauki, 1985, no. 11, issue 4, pp. 129–132.

    Google Scholar 

  14. Gol’dsmit, V., Udar (Percussion), Moscow: Gosstroiizdat, 1965.

    Google Scholar 

  15. Panovko, Ya.G., Vvedenie v teoriyu mekhanicheskogo udara (Introduction into Mechanical Percussion Theory), Moscow: Nauka, 1977

    Google Scholar 

  16. Routh, E.J., An Elementary Treatise on Dynamics of a System of Rigid Bodies with Numerous Examples, London: MacMillan and Co., 1877.

    Google Scholar 

  17. Urakaev, F.Kh., Mechanism and Kinetics of Mechanochemical Processes, High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, M. Sopicka-Lizer (Ed.), Oxford-Cambridge-New Delhi: Woodhead Publishing Limited, 2010, Chapter 2, pp. 9–44.

    Google Scholar 

  18. Urakaev, F.Kh. and Boldyrev, V.V., Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices. 1. Theory, Powder Technology, 2000, vol. 107, iss. 1−2, pp. 93–107.

    Article  Google Scholar 

  19. Kapitonov, A.M. and Red’kin, V.E., Fiziko-mekhanicheskie svoistva kompozitsionnykh materialov. Uprugie svoistva (Physico-Mechanical Properties of Composites. Elastic Properties), Krasnoyarsk: Sib. Fed. Univer., 2013.

    Google Scholar 

  20. Lykov, A.V., Teoriya teploprovodnosti (Thermal Conductivity Theory), Moscow: Vyssh. Shk., 1967.

    Google Scholar 

  21. Anderson, O., Definition and Some Applications of Isotropic Elastic Constant Polycrystal Systems, Obtained from Monocrystal Evidence, vol. 3, in Mezon, U., Lattice Dynamics. Physical Acoustics, Moscow: Mir, 1968, pp. 62–121.

    Google Scholar 

  22. Voronkova, E.M., Grechushnikov, B.N., Distler, G.I., and Petrov, I.P., Opticheskie materialy dlya infrakrasnoi tekhniki (Optical Materials for Infrared Apparatus), Handbook, Moscow: Nauka, 1965.

    Google Scholar 

  23. Batuev, G.S., Golubkov, Yu.V., Efremov, A.K., and Fedosov, A.A., Inzhenernye metody issledovaniya udarnykh protsessov (Engineering Techniques to Study Percussion Processes), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  24. Shuvalov, L.A., Urusovskaya, A.A., Zheludev, I.S., et al., Mechanical Properties of Crystals, Sovremennaya kristallografiya (Modern Crystalography), vol. 4: Physical Properties of Crystals, Moscow: Nauka, 1981, pp. 47–152.

    Google Scholar 

  25. Hillig, W.B. Strength of Bulk Fused Quartz, J. Appl. Phys., 1961, vol. 32. iss. 4, pp. 741.

    Article  Google Scholar 

  26. Gyulai, Z., Festigkeits-und Plastizitätseigenschaften von NaCl-Nadelkristallen, Zeitschrift für Physik, 1954, vol. 138, iss. 3−4, pp. 317–321.

    Article  Google Scholar 

  27. Urakaev, F.Kh. and Boldyrev V. V., Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices. 2. Applications of the Theory, Experiment, Powder Technology, 2000, vol. 107, issue 3, pp. 197–206.

    Article  Google Scholar 

  28. Urakaev, F.Kh., Bulavchenko, A.I., Uralbekov, B.M., Massalimov, I.A., Tatykaev, B.B., Bolatov, A.K., Dzharlykasimova, D.N., and Burkitbaev, M.M., Mechanochemical Synthesis of Colloid Sulfur Particles in System Na2S2O3−H2(C4H4O4)−Na2SO3, Kolloid Zh., 2016, vol. 78, no. 2, pp. 193–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kh. Urakaev.

Additional information

Original Russian Text © F.Kh. Urakaev, T.S. Yusupov, 2017, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2017, No. 1, pp. 135–142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urakaev, F.K., Yusupov, T.S. Numeric Evaluation of Kinematic and Dynamic Characteristics of Mineral Treatment in Disintegrator. J Min Sci 53, 133–140 (2017). https://doi.org/10.1134/S1062739117011945

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739117011945

Keywords

Navigation