Skip to main content
Log in

Hydraulic fracturing for in situ stress measurement

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

It is experimentally found that shut-in pressure conforms with the fracture initiation pressure if the fracture surfaces are uniformly loaded by fluid. The article shows that equaling minimal stress and shut-in pressure in local fractures results in overestimates. The error depends on the length of a hydrofracturing facility and is high under low compression in rocks (5–10 MPa). The authors put forward decisions aimed at improvement of accuracy and enhancement of information content of hydraulic fracturing in the in situ stress measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubbert, M.K. and Willis, D.G., Mechanism of Hydraulic Fracturing, Trans. AIME, 1957, vol. 210, pp. 153–168.

    Google Scholar 

  2. Haimson, B.C. and Fairhurst, C., Initiation and Extension of Hydraulic Fracture in Rocks, Soc. Petr. Engrs. J., 1967, pp. 310–318.

    Google Scholar 

  3. Bredehoeft, J.D., Wolf, R.G., Keys, W.S., and Shutter, E., Hydraulic Fracturing to Determine the Regional In Situ Stress Field in the Piceance Basin, Colorado, J. Geological Society of American Bulletin, 1976, vol. 87, no. 2, pp. 250–258.

    Article  Google Scholar 

  4. Haimson, B.C., Near Surface and Deep Hydrofracturing Stress Measurements in the Waterloo Quartzite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1980, vol. 17, no. 2, pp. 81–88.

    Article  Google Scholar 

  5. Cornet, F.H. and Valette, B., In-Situ Stress Determination from Hydraulic Injection Test Data, J. Geophys. Res., 1984, vol. 89, pp. 11527–11537.

    Article  Google Scholar 

  6. Ito, T., Sato, A., and Hayashi, K., Two Methods for Hydraulic Fracturing Stress Measurements Needless the Ambiguous Reopening Pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1997, vol. 34, no. 3, paper no. 143.

    Google Scholar 

  7. Ito, T., Igarashi, A., Ito, H., and Sano, O., Problem for the Maximum Stress Estimation in Hydrofracturing Method and Its Potential Solution, Proc. US Rock Mech. Symp., 2005, ARMA/USRMS 05-862 (CD-ROM).

    Google Scholar 

  8. Zoback, M.D., Rummel, F., Jung, R., and Raleigh, C.B., Laboratory Hydraulic Fracturing Experiments in Intact and Pre-Fractured Rock, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1977, vol. 14, pp. 49–58.

    Article  Google Scholar 

  9. Ratigan, J.L., The Use of Fracture Reopening Pressure in Hydraulic Fracturing Stress Measurements, Rock Mech. Rock Engng., 1992, vol. 25, pp. 225–236.

    Article  Google Scholar 

  10. Cheung, L.S. and Haimson, B.C., Laboratory Study of Hydraulic Fracturing Pressure Data–How Valid is Their Conventional Interpretation, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1989, vol. 26, pp. 595–604.

    Article  Google Scholar 

  11. Rutqvist, J., Chin-Fu, T., and Stephansson, O., Uncertainty in the Maximum Principal Stress Estimated from Hydraulic Fracturing Measurements due to the Presence of the Induced Fracture, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2000, vol. 37, pp. 107–120.

    Article  Google Scholar 

  12. Aggson, J.R. and Kim, K., Analysis of Hydraulic Fracturing Pressure Histories: A Comparison of Five Methods Used to Identify Shut-In Pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1987, vol. 24, no. 1, pp. 75–80.

    Article  Google Scholar 

  13. Rubtsova, E.V. and Skulkin, A.A., Methods of Indirect Shut-In Pressure Determination in Hydraulic Fracturing Stress Measurement, Proc. Sci. Conf. InterExpo GEO-Sibir-2016, vol. 3, Novosibirsk: SGUGiT, 2016.

    Google Scholar 

  14. Mini-frac (DFIT) Analysis for unconventional reservoirs using F.A.S.T. Welltest. Available at: http://www.petroleumengineers.ru/sites/default/files/minifrac_analysis_for_unconventional_reservoirs_usi ng_fast_welltest_16-aug-2013.pdf.

  15. Kehle, O.K., The Determination of Fracture Stresses through Analysis of Hydraulic Well Fracturing, J. Geophys. Res., 1964, vol. 69, pp. 259–273.

    Article  Google Scholar 

  16. Cornet, F.H., Interpretation of Hydraulic Injection Test for In-Situ Stress Determination, Proc. Int. Workshop on Hydraulic Fracturing Stress Measurements, Zoback and Haimson (Eds.), Monterey, National Academy Press, Washington D. C., 1983, pp. 149–158.

    Google Scholar 

  17. Sung, O. Choi., Interpretation of Shut-In Pressure in Hydrofracturing Pressure–Time Records Using Numerical Modeling, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2012, vol. 50, pp. 29–37.

    Article  Google Scholar 

  18. Perkins, T.K. and Kern, L.R., Widths of Hydraulic Fractures, J. Petroleum Technology, 1961, vol. 13, no. 9, pp. 937–949.

    Article  Google Scholar 

  19. Atroshenko, A.S., Krivosheev, S.I., and Petrov, A.Yu., Fracture Growth under Dynamic Destruction of Polymetylmetacrylate, Zh. Tekh. Fiz., 2002, vol. 72, issue 2, pp. 52–58.

    Google Scholar 

  20. Mastrojannis, E.N., Keer, L.M., and Mura, T., Growth of Planar Cracks Induced by Hydraulic Fracturing, Int. J. Num. Meth. Engng., 1980, vol. 15, no. 1, pp. 41–54.

    Article  Google Scholar 

  21. Serdyukov, S.V., Kurlenya, M.V., Patutin, A.V., Rybalkin, L.A., and Shilova, T.V., Experimental Test of Directional Hydraulic Fracturing Technique, J. Min. Sci., 2016, vol. 52, no. 4, pp. 615–622.

    Article  Google Scholar 

  22. Kurlenya, M.V., Zvorygin, L.V., and Serdyukov, S.V., Control of Longitudinal Hydraulic Fracturing of Wells, J. Min. Sci., 1999, vol. 35, no. 5, pp. 445–454.

    Article  Google Scholar 

  23. Shilova, T.V. and Serdyukov, S.V., Protection of Operating Degassing Holes from Air Inflow from Underground Excavations, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1049–1055.

    Article  Google Scholar 

  24. Rukovodstvo po otsenke sostoyaniya i svoistv ugol’nogo massiva skvazhinnymi gidravlicheskimi datchikami (Guidelines on Estimation of State and Properties of Coal Using Downhole Hydraulic Sensors), Novosibirsk: IGD SO AN SSSR, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Serdyukov.

Additional information

Original Russian Text © S.V. Serdyukov, M.V. Kurlenya, A.V. Patutin, 2016, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2016, No. 6, pp. 6–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, S.V., Kurlenya, M.V. & Patutin, A.V. Hydraulic fracturing for in situ stress measurement. J Min Sci 52, 1031–1038 (2016). https://doi.org/10.1134/S1062739116061563

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739116061563

Keywords

Navigation