Journal of Mining Science

, Volume 52, Issue 5, pp 1024–1030 | Cite as

Down-the-hole unbalance vibration exciter for seismic treatment of bottom-hole zone

  • S. V. Serdyukov
  • L. A. Rybalkin
  • P. A. Dergach
  • A. S. Serdyukov
  • A. V. Azarov
New Methods and Instruments in Mining
  • 18 Downloads

Abstract

The down-the-hole unbalance vibration exciter with the pneumatic drive is designed to treat face zone in the seismic frequency range. The modular-type source consists of a vibration generator with the automated stepped static moment variation, a hold-down unit and an in-built pneumatic percussive device to advance the facility in uncased holes. The article gives pilot test data on R&D model of the vibration exciter, and amplitude–frequency characteristic and spectral content of the excited signal.

Keywords

Down-the-hole seismic source vibrational impact rock mass seismic vibration spectral content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westermark, R. and Brett, J.F., Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County. Final Report DOE Contract Number DE-FG26-00BC1519, Oklahoma: Oil & Gas Consultants International, Inc., 2003.CrossRefGoogle Scholar
  2. 2.
    Kurlenya, M.V. and Serdyukov, S.V, Determination of the Region of Vibroseismic Action on an Oil Deposit from the Daylight Surface, J. Min. Sci., 1999, vol. 35, no. 4, pp. 333–340.CrossRefGoogle Scholar
  3. 3.
    Skazka, V.V., Serdyukov, S.V., and Kurlenya, M.V, Downhole Unbalance Vibration Exciter near-Field Analysis, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1026–1032.CrossRefGoogle Scholar
  4. 4.
    Skazka, V.V., Serdyukov, S.V., Erokhin, G.N., and Serdyukov, A.S., Near-Field Range of the Direct-Impact Seismic Source, J. Min. Sci., 2013, vol. 49, no. 1, pp. 60–67.CrossRefGoogle Scholar
  5. 5.
    Timonin, V.V. and Kondratenko, A.S, Process and Measurement Equipment Transport in Uncased Boreholes, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1056–1061.CrossRefGoogle Scholar
  6. 6.
    Chichinin, I.S., Vibrtatsionnoe izluchenie seismicheskikh voln (Vibration-Induced Emission of Seismic Waves), Moscow: Nedra, 1984.Google Scholar
  7. 7.
    Borzov, V.M. and Ivlev, V.I, Improvement of Operation of Plate Pneumatic Motor Using Structural Materials with Better Properties, Vestn. Nauch.-Tekh. Razv., 2009, no. 9(25), pp. 2–6.Google Scholar
  8. 8.
    Chukhareva, N.V., Raschet prostykh i slozhnykh gazoprovodov (Design of Simple and Complex Gas Pipelines), Tomsk: TPU, 2010.Google Scholar
  9. 9.
    Mills, K., Jeffrey, R., Black, D., et al., Developing Methods for Placing Sand-Propped Hydraulic Fractures for Gas Drainage in the Bulli Seam, Underground Coal Operators’ Conference, Wollongong, Australia, 2006, pp. 190–199.Google Scholar
  10. 10.
    Serdyukov, S.V., Kurlenya, M.V., Patutin, A.V., Rybalkin, L.A., and Shilova, T.V, Experimental Test of Directional Hydraulic Fracturing Technique, J. Min. Sci., 2016, vol. 52, no. 4, pp. 615–622.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Serdyukov
    • 1
  • L. A. Rybalkin
    • 1
  • P. A. Dergach
    • 1
  • A. S. Serdyukov
    • 1
  • A. V. Azarov
    • 1
  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations