Advertisement

Journal of Mining Science

, Volume 52, Issue 5, pp 982–988 | Cite as

Composition and properties of highly dispersed particles generated under sulfide ore milling

  • Yu. L. Mikhlin
  • S. A. Vorob’ev
  • S. V. Karasev
  • A. S. Romanchenko
  • A. A. Karacharov
  • E. S. Kamensky
  • E. A. Burdakova
Mineral Dressing
  • 27 Downloads

Abstract

Laser diffraction analysis and dynamic light scattering method are used to study highly dispersed particles generated during milling of lead–zinc ore (Gorevsky deposit), rich sulfide and impregnated copper–nickel ore (Norilsk and Kingash deposits), as well as Gorevsky Pb concentrate and Sorsky deposit Cu and Mo concentrates. Zeta-potentials of particles are measured in clarified (colloid) solution above precipitation; surface composition of ores and their fine sizes is analyzed using X-ray photoelectron spectroscopy. The highest yield of particles under 5 μm size grade (to 3 total percent) was observed in case of Kingash ore; moreover, zeta-potential of these particles was positive at pH 9.5 and surface compositions of precipitation and colloid particles were nearly the same. Comparatively high content of ultra dispersed fractions was observed in case of Gorevsky ore and Pb concentrate. Clarified solutions contained mostly aggregates of nano-size particles, first of all, Si and Mg minerals, with the hydrodynamic diameter of 500–1200 nm, which shows little changes with time. Sulfide component of hydrosols contains many nano-size particles of minerals that better resist oxidation (sphalerite, molybdenite, pentlandite, chalcopyrite) and, in particular, can transfer metals within the ambient medium.

Keywords

Nonferrous metal ores highly dispersed particles colloid particles grain-size composition analysis laser diffraction dynamic light scattering zeta-potential X-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trahar, W.J., A Rational Interpretation of the Role of Particle Size in Flotation, Int. J. Miner. Process, 1981, vol. 8, pp. 289–327.CrossRefGoogle Scholar
  2. 2.
    Feng, D. and Aldrich, C, Effect of Particle Size on Flotation Performance of Complex Sulphide Ores, Miner. Eng., 1999, vol. 12, pp. 721–731.CrossRefGoogle Scholar
  3. 3.
    Johnson, N.W, Liberated 0–10 µm Particles from Sulphide Ores, their Production and Separation—Recent Developments and Future Needs, Miner. Eng., 2006, vol. 19, pp. 666–674.Google Scholar
  4. 4.
    Abramov, A.A., Flotatsionnye metody obogashcheniya (Flotation Processes), Moscow: Gorn. Kniga, 2008.Google Scholar
  5. 5.
    Kalinnikov, V.T., Makarov, V.N., Mazukhina, S.I., Makarov, D.V., and Masloboev, V.A, Investigation into Hypergenic Processes in Tailings of Sulfide Copper-Nickel Ore Processing, Khim. Int. Ustoich. Razv., 2005, vol. 13, pp. 515–519.Google Scholar
  6. 6.
    Wang, C., Harbottle, D., Liu, Q., and Xu, Z, Current State of Fine Mineral Tailings Treatment: A Critical Review on Theory and Practice, Miner. Eng., 2014, vol. 58, pp. 113–131.CrossRefGoogle Scholar
  7. 7.
    Bandini, P., Prestidge, C.A., and Ralston, J, Colloidal Iron Oxide Slime Coatings and Galena Particle Flotation, Miner. Eng., 2001, vol. 14, pp. 487–497.CrossRefGoogle Scholar
  8. 8.
    Peng, Y. and Grano, S, Dissolution of Fine and Intermediate Sized Galena Particles and their Interactions with Iron Hydroxide Colloids, J. Colloid Interf. Sci., 2010, vol. 347, pp. 127–131.CrossRefGoogle Scholar
  9. 9.
    Hudson-Edwards, K.A, Sources,Mineralogy,Chemistry and Fate of Heavy Metal-Bearing Particles in Mining-Affected Rivers Systems, Mineral. Mag., 2003, vol. 67, pp. 205–217.CrossRefGoogle Scholar
  10. 10.
    Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., and Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems, Science, 2008, vol. 319, pp. 1631–1635.CrossRefGoogle Scholar
  11. 11.
    Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J.N., et al., The Role of Nanominerals and Mineral Nanoparticles in the Transport of Toxic Trace Metals: Field Flow Fractionation and Analytical TEM Analyses after Nanoparticle Isolation and Density Separation, Geochim. Cosmochim. Acta, 2013, vol. 102 (DOI: 10.1016/j.gca., 2012, 10.029).Google Scholar
  12. 12.
    Weber, F.-A., Voegelin, A., Kaegi, R., and Kretzschmar, R, Contaminant Mobilization by Metallic Copper and Metal Sulphide Colloids in Flooded Soil, Nature Geosci., 2009, vol. 2, pp. 267–271.CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Nanogeochemistry: Nanostructures, Emergent Properties and their Control on Geochemical Reactions and Mass Transfers, Chem. Geol., 2014, vol. 378–379, pp. 1–23.Google Scholar
  14. 14.
    Garner, K.L. and Keller, A.A, Emerging Patterns for Engineered Nanomaterials in the Environment: A Review of Fate and Toxicity Studies, J. Nanopart. Res., 2014, vol. 16, pp. 2503–2526.CrossRefGoogle Scholar
  15. 15.
    Zirkler, D., Lang, F., and Kaupenjohann, M., “Lost in Filtration”—The Separation of Soil Colloids from Larger Particles, Colloids Surf. A, 2012, vol. 399, pp. 35–40.Google Scholar
  16. 16.
    Mikhlin, Yu., Vorob’ev, S., Romanchenko, A., Karasev, S., Karacharov, A., and Zharkov, S, Ultrafine Particles Derived from Mineral Processing: a Case Study of the Pb–Zn Sulfide Ore with Emphasis on Lead-Bearing Colloids, Chemosphere, 2016, vol. 147, pp. 60–66.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. L. Mikhlin
    • 1
  • S. A. Vorob’ev
    • 1
    • 2
  • S. V. Karasev
    • 1
  • A. S. Romanchenko
    • 1
  • A. A. Karacharov
    • 1
  • E. S. Kamensky
    • 1
  • E. A. Burdakova
    • 2
  1. 1.Institute of Chemistry and Chemical Technology, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations