Journal of Mining Science

, Volume 52, Issue 5, pp 933–942 | Cite as

Geomechanical assessment of compound mining technology with backfilling and caving for thick flat ore bodies

  • A. M. Freidin
  • A. A. Neverov
  • S. A. Neverov
Mineral Mining Technology


The authors develop a version of a compound technology with consolidating backfilling and caving for thick flat body of polymetals. Numerical evaluation shows that the technology with the cover caving above consolidating backfill ensures higher safety of mining.


Compound mining technolgy great depth rock mass stress–strain state underground excavation backfill room pillar roof safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bronnikov, D.N., Zamesov, N.F., and Bogdanov, G.I., Razrabotka rud na bol’shikh glubinkah (Deep-Level Ore Mining), Moscow: Nedra, 1982.Google Scholar
  2. 2.
    Slavikovsky, O.V., Podzemnaya razrabotka mestorozhdenii rud tsvetnykh metallov na bol’shikh glubinakh (Deep-Level Mining of Nonferrous Metal Ore), Moscow: TsNIIEITsM, 1983.Google Scholar
  3. 3.
    Freidin, A.M., Shalaurov, V.A., Eremenko, A.A., et al., Povyshenie effektivnosti podzemnoi razrabotki rudnykh mestorozhdenii Sibiri i Dal’nego Vostoka (Improvement of Underground Mining Efficiency in Siberia and Far East of Russia), Novosibirsk: Nauka, 1992.Google Scholar
  4. 4.
    Oparin, V.N., Tapsiev, A.P., and Freidin, A.M, Classification of Methods for Ore Mining at a Large Depth, J. Min. Sci., 2008, vol. 44, no. 6, pp. 569–577.CrossRefGoogle Scholar
  5. 5.
    Neverov, A.A., Neverov, S.A., Nikol’sky, A.M., and Alimseitova, Z.K, Geomechanical Assessment of Geotechnical Situation in the Transition from Compound Mining with Backfilling and Caving to Block Caving, Vestn. KuzGTU, 2015, no. 2, pp. 35–40.Google Scholar
  6. 6.
    Neverov,, A., Freidin, A., and Vasichev, S, Assessment of the Combined Ore Mining with Caving and Backfilling, Proc. Int. Conf. Theory and Practice of Geomechanics for Effectiveness the Mining Production and the Construction, Bulgaria, 2010, pp. 461–469.Google Scholar
  7. 7.
    Freidin, A.M., Kakoilo, V.N., Shalaurov, V.A., et al., USSR Author’s Certificate no. 1606667, Byull. Izobret., 1990, no. 42.Google Scholar
  8. 8.
    Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw Hill, 1971.Google Scholar
  9. 9.
    Nazarova, L.A., Nazarov, L.A., and Miroshnichenko, N.A, Determining Deformation and Strength of a Filling Mass during Stoping by the Inverse Problem Solving, J. Min. Sci., 2012, vol.48, no. 4, pp. 616–621.CrossRefGoogle Scholar
  10. 10.
    Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A., Tekhnogennye geomekhanicheskie polya napryazhenii (Mining-Induced Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.Google Scholar
  11. 11.
    Kurlenya, M.V., Seryakov, V.M., Korotkikh, V.I., and Tapsiev, A.P, Geomechanical Substantiation of Pillar-and-Room Sequences of Mining the Protective Layer, J. Min. Sci., 1991, vol. 27, no. 4, pp. 269–275.CrossRefGoogle Scholar
  12. 12.
    Neverov, A.A, Geomechanical Substantiation of Modified Room-Work in Flat Thick Deposits with Ore Drawing under Overhang, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1016–1024.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Freidin
    • 1
  • A. A. Neverov
    • 1
  • S. A. Neverov
    • 1
  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations