Journal of Mining Science

, Volume 52, Issue 5, pp 873–877 | Cite as

Stress dependence of elastic P-wave velocity and amplitude in coal specimens under varied loading conditions

  • V. L. Shkuratnik
  • P. V. Nikolenko
  • A. E. Koshelev
Geomechanics

Abstract

Experiments allowed finding regular patterns in propagation of elastic P-waves in specimens of black coal exposed to uniaxial compression and triaxial compression by von Karman. It is shown that in case of uniaxial compression, the largest information content is ensured by translucence in perpendicular to bedding and loading axis of coal specimens. Such translucence exhibits four stages of deformation of a specimen. The information content of translucence under triaxial compression reduces with the increase in the constrained pressure that prevents from disintegration of a coal specimen. Four deformation stages are best identified with the constrained pressure of 2.5 MPa, while only stages of specimen consolidation and failure are traced at the pressure of 10 MPa.

Keywords

Black coal elastic waves specimen laboratory test ultrasound one- and bi-axial loading Kuznetsk Coal Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V, Kinetics of Seismic Emission I Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.CrossRefGoogle Scholar
  2. 2.
    Azarov, N.Ya. and Yakovlev, D.V., Seismoakusticheskii metod prognoza gorno-geologicheskikh uslovii ekspluatatsii ugol’nykh mestorozhdenii (Acoustics Method to Predict Ground Conditions at Coal Deposits), Moscow: Nedra, 1988.Google Scholar
  3. 3.
    Adushkin, V.V. and Oparin, V.N, From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part IV, J. Min. Sci., 2016, vol. 52, no. 1, pp. 1–35.CrossRefGoogle Scholar
  4. 4.
    Nazarov, L.A, Determination of Properties of Structure Rock Mass by the Acoustic Method, J. Min. Sci., 1999, vol. 35, no. 3, pp. 240–249.CrossRefGoogle Scholar
  5. 5.
    Zakharov, V.N., Seismoakusticheskoe prognozirovanie i kontrol’ sostoyaniya i svoistv gornykh porod pri razrabotke ugol’nykh mestorozhdenii (Acoustic Prediction and Control of State and Properties of Rocks in Coal Mining), Moscow: IGD Skochinskogo, 2002.Google Scholar
  6. 6.
    Feng, Z., Mingjie, X., Zhonggao, M., Liang, C., Zhu, Z., and Juan, L, An Experimental Study on the Correlation between the Elastic Wave Velocity and Microfractures in Coal Rock from the Qingshui Basin, Journal of Geophysics and Engineering, 2012, vol. 9, issue 6, pp. 691–696.CrossRefGoogle Scholar
  7. 7.
    Zagorskii, L.S. and Shkuratnik, V.L, Method of Determining the Vertical Seismic Profile of a Rock Massif Using Rayleigh-Type Waves, Acoustical Physics, 2013, vol. 59, issue 2, pp. 197–206.CrossRefGoogle Scholar
  8. 8.
    Nikolenko, P.V. and Shkuratnik, V.L, Acoustic Emission in Composites and Applications for Stress Monitoring in Rock masses, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1088–1093.CrossRefGoogle Scholar
  9. 9.
    Rzhevsky, V.V. and Yamshchikov, V.S., Akusticheskie metody issledovaniya i kontrolya gornykh porod v massive (Acoustic Method for Rock Mass Investigation and Control), Moscow: Nedra, 1973.Google Scholar
  10. 10.
    Nazarov, L.A., Nazarova, L.A., Romensky, E.I., Cheverda, V.A., and Epov, M.I, Acoustic Method for Determining Stress State of Rocks Based on Solution of Inverse Kinematic Problem of Seismology, Dokl. Akad. Nauk, 2016, vol. 466, no. 6, pp. 718–721.Google Scholar
  11. 11.
    Nazarova, L.A., Nazarov, L.A., and Protasov, M.I, Reconstruction of 3D Stress Field in Coal–Rock Mass by Solving Inverse Problem Using Tomography Data, J. Min. Sci., 2016, vol. 52, no. 4, pp. 623–631.CrossRefGoogle Scholar
  12. 12.
    Ivanov, V.I. and Belov, N.I., Influence of Stress Tensor Components on the Assessment of Stress State of Rocks by Elastic Wave Velocities, Geofizicheskie sposoby kontrolya napryazhenii i deformatsii (Geophysical Methods of Stress and Strain Control), Novosibirsk: IGD SORAN, 1985, pp. 3–6.Google Scholar
  13. 13.
    Fjaer, E, Static and Dynamic Moduli of a Weak Sandstone, Geophysics., 2009, vol. 74(2), WA103–WA112.CrossRefGoogle Scholar
  14. 14.
    Pervukhina, M., Gurevich, B., Dewhurst, D.N., and Siggins, A.F, Applicability of Velocity–Stress Relationships Based on the Dual Porosity Concept to Isotropic Porous Rocks, Geophysical Journal International, 2010, vol. 181, no. 3, pp. 1473–1479.Google Scholar
  15. 15.
    Lokajícek, T., Svitek, T., and Petružá lek, M, Laboratory Approach to the Study of Dynamic and Static Bulk Anisotropy in Rock under High Hydrostatic Pressure by Simultaneous P, SSounding and Sample Deformation Measurements on Spheres, 48th USRock Mechanics, Geomechanics Symposium, 2014, vol. 2, pp. 988–994.Google Scholar
  16. 16.
    Pimienta, L., Fortin, J., and Guéguen, Y, Bulk Modulus Dispersion and Attenuation in Sandstones, Geophysics, 2015, vol. 80, issue. 2, pp. 111–127.CrossRefGoogle Scholar
  17. 17.
    Meng, Z.-P., Zhang, J.-C., and Tiedemann, J, Relationship between Physical and Mechanical Parameters and Acoustic Wave Velocity of Coal Measures Rocks, Chinese Journal of Geophysics, 2006, vol. 49, issue 5, pp. 1505–1510.CrossRefGoogle Scholar
  18. 18.
    Wei, X., Wang, S.-X., Zhao, J.-G., Tang, G.-Y., and Deng, J.-X., Laboratory Study of Velocity Dispersion of the Seismic Wave in Fluid-Saturated Sandstones, Chinese Journal of Geophysics, 2015, vol. 58, issue 9, pp. 3380–3388.Google Scholar
  19. 19.
    Zheng, Z., Khodaverdian, M., and McLennan, J.D, Static and Dynamic Testing of Coal Specimens, SCA Conference, 1991, pp. 9120.Google Scholar
  20. 20.
    Yao, Q. and Han, D, Acoustic Properties of Coal from Lab Measurement, 80th Annual International Meeting, SEG, Expanded Abstracts, 2008, 27, pp. 1815–1819.Google Scholar
  21. 21.
    Haibo Wu, Shouhua Dong, Donghui Li, Yaping Huang, and Xuemei Qi, Experimental Study on Dynamic Elastic Parameters of Coal Samples, International Journal of Mining Science and Technology, 2015, vol. 25, no. 3, pp. 447–452.CrossRefGoogle Scholar
  22. 22.
    Oparin, V.N., Kiryaeva, T.A., Usol’tseva, O.M., Tsoi, P.A., and Semenov, V.N, Nonlinear Deformation–Wave Processes in Various Rank Coal Specimens Loaded to failure under Varied Temperature, J. Min. Sci., 2015, vol. 51, no. 4, pp. 641–658.CrossRefGoogle Scholar
  23. 23.
    Cai, Y., Liu, D., Mathews, J.P., Pan, Z., Elsworth, D., Yao, Y., Li, J., and Guo, X, Permeability Evolution in Fractured Coal—Combining Triaxial Confinement with X-Ray Computed Tomography, Acoustic Emission and Ultrasonic Techniques, International Journal of Coal Geology, 2014, vol. 45, pp. 91–104.CrossRefGoogle Scholar
  24. 24.
    Shea, V.R. and Hanson, D.R., Elastic Wave Velocity and Attenuation as Used to Define Phases of Loading and Failure in Coal, Int. J. Rock Mech. Min. Sci., 1988, vol. 25, issue. 6, pp. 431–437.CrossRefGoogle Scholar
  25. 25.
    Yamshchikov, V.S., Shkuratnik, V.L., and Bobrov, A.V, An Evaluation of the Microcrack Density of Rocks by Ultrasonic Velocimetric Method, J. Min. Sci., 1985, vol. 21, no. 4, pp. 363–366.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. L. Shkuratnik
    • 1
  • P. V. Nikolenko
    • 1
  • A. E. Koshelev
    • 2
  1. 1.Institute of Integrated Mineral Development—IPKONRussian Academy of SciencesMoscowRussia
  2. 2.Gazprom GeotechnologyMoscowRussia

Personalised recommendations