Journal of Mining Science

, Volume 52, Issue 5, pp 842–850 | Cite as

Applications of non-Archimedean analysis in the block hierarchical rock mass mechanics

  • A. F. Revuzhenko


The article considers applicability of non-Archimedean analysis to multi-scale rock mass modeling based on the concept of dissipation function. In the capacity of coordinates, the author introduces non-Archimedean lines of infinite hierarchy. Basic definitions of univariate analysis are generalized for a two-dimensional case.


Subsurface hierarchy deformation dissipation function non-Archimedean value 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bulat, A.F. and Dyrda, V.I., Fraktaly v geomekhanike (Fractals in Geomechanics), Kiev: Naukova dumka, 2005.Google Scholar
  2. 2.
    Zhuravkov, M.A. and Romanova, N.S, Determination of Mechanical Properties of Geomaterials Based on Nano-Indentation Tests and Fraction Order Models, J. Min. Sci., 2016, vol. 52, no. 2, pp. 207–217.CrossRefGoogle Scholar
  3. 3.
    Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I, Mechanism of Deformation of a Granular Material under High Shear, J. Min. Sci., 1974, vol. 10, no. 3, pp. 374–377.CrossRefGoogle Scholar
  4. 4.
    Sadovsky, M.A, Natural Lumpiness of Rocks, Dokl. Akad. Nauk, 1979, vol. 247, no. 4, pp. 829–832.Google Scholar
  5. 5.
    Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Dynamics of Deformation of Block Rock Masses), Moscow: Akademkniga, 2003.Google Scholar
  6. 6.
    Osokina, D.N., Hierarchical Properties of Tectonic Stress Field, Polya napryazhenii i deformatsii v zemnoi kore (Fields of Stresses and Strains in the Earth Crust), Yu.D. Bulanzhe (Ed.), Moscow: Nauka, 1987.Google Scholar
  7. 7.
    Rebetsky, Yu.L., Napryazheniya i prochnost’ prirodnykh massivov (Stresses and Strength of the Natural Rock Masses), Moscow: Akademkniga, 2007.Google Scholar
  8. 8.
    Adushkin, V.V. and Spivak, A.A., Fizicheskie polya v pripoverkhnostnoi geofizike (Physical Fields in the Subsurface Geophysics), Moscow: Geos, 2014.Google Scholar
  9. 9.
    Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I, Features of Rock Mass Response to Near-Field Blasting, Dokl. Akad. Nauk, 1987, vol. 293, no. 1, pp. 67–70.Google Scholar
  10. 10.
    Adushkin, V.V., Garnov, V.V., Kurlenya, M.V., Oparin, V.N., and Revuzhenko, A.F, Alternating Response of Rocks to Dynamic Impact, Dokl. Akad. Nauk, 1992, vol. 323, no. 2, pp. 263–269.Google Scholar
  11. 11.
    Revuzhenko, A.F, Mathematical Apparatus for Describing the Structural Levels of Geological Media, J. Min. Sci., 1997, vol. 33, no. 3, pp. 22–36.Google Scholar
  12. 12.
    Revuzhenko, A.F., Matematicheskii analiz funktsii nearkhimedovoi peremennoi (Mathematical Analysis of Functions of the Non-Archimedean Variable), Novosibirsk: Nauka, 2012.Google Scholar
  13. 13.
    Gel’fond, A.O., Ischislenie konechnykh raznostei (Calculation of Finite Differences), Moscow: KomKniga, 2006.Google Scholar
  14. 14.
    Kats, V.G. and Chen, P., Kvantovyi analiz (Quantum Analysis), Moscow: MTsNMO, 2005.Google Scholar
  15. 15.
    Shishkina, O.A., Euler–Maclaurin Formula for the Rational Parallelotope, Izv. IGU, Series: Mathematics, 2015, vol. 13, pp. 56–71.Google Scholar
  16. 16.
    Orlov, A.I, Statistical Evaluation for Grouped Data, Nauch. Zh. KubGAU, 2014, no. 98(04).Google Scholar
  17. 17.
    Bykovtsev, G.I. and Ivlev, D.D., Teoriya plastichnosti (Theory of Plasticity), Vladivostok: Dalnauka, 1998.Google Scholar
  18. 18.
    Ishlinsky, A.Yu. and Ivlev, D.D., Matematicheskaya teoriya plastichnosti (Mathematical Theory of Plasticity), Moscow: Fizmatlit, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations