Skip to main content
Log in

Numerical modeling of wavefields of microseismic events in underground mining

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article describes modeling procedure and calculation of wave fields in microseismicity monitoring in anisotropic medium. The research findings are intended for testing of processing algorithms for data of seismic observations in underground mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malovichko, D.A., Analysis of Mechanisms of Events in the Upper Kama Potash Mines, Cand. Phys.- Math. Sci. Dissertation, Moscow, 2004.

    Google Scholar 

  2. Kurlenya, M.V., Serdyukov, A.S., Duchkov, A.A., and Serdyukov, S.V., Wave Tomography of Methane Pockets in Coal Bed, J. Min. Sci., 2014, vol. 5, no. 4, pp. 617–622.

    Article  Google Scholar 

  3. Metodicheskie ukazaniya po sozdaniyu sistem kontrolya sostoyaniya gornogo massiva i prognoza gornykh udarov kak elementov mnogofunktsional’noi sistemy bezopasnosti ugol’nykh shakht (Instructional Guidelines on Rock Mass Control and Rockburst Prediction Systems as Components of Multifunctional Coal Mine Safety Systems), Saint-Patersburg: VNIMI, 2012.

  4. Serdyukov, S.V., Azarov, A.V., Dergach, P.A., and Duchkov, A.A., Equipment for Microseismic Monitoring of Geodynamic Processes in Undeground Hard Mineral Mining, J. Min. Sci., 2015, vol., 51, no. 3, pp. 634–640.

    Article  Google Scholar 

  5. Yaskevich, S.V., Grechka, V.Yu., and Duchkov, A.A., Processing Microseismic Monitoring Data, Considering Seismic Anisotropy of Rocks, J. Min. Sci., 2015, vol. 51, no. 3, pp. 477–486.

    Google Scholar 

  6. Loginov, G.N. and Yaskevich, S.V., Methods of Assessing Precision of Location of Hypocenters in Microseismic Monitoring of Hydraulic Fracturing, Geosciences. State-of-the-Art: Proc. 1st Al-Russia Youth Conf., Novosibirsk, 2015.

    Google Scholar 

  7. Loginov, G.N. and Yaskevich, S.V., Polarization Analysis Accuracy in Microseismicty Monitoring, Proc. Int. Conf. Mathematical Modeling Analysis and Identification Methods, devoted to the 85th Anniversary of A.S. Alekseev, Novosibirsk, 2013.

    Google Scholar 

  8. Bortnikov, P.B. and Mainagashev, S.M., Inverse Problems in Microseismic Monitoring, Informatsionnye tekhnologii i obratnye zadachi ratsional’nogo prirodopol’zovaniya (Information Technologies and Inverse Problems in Rational Nature Management), Khanty-Mansiysk: YuNIIT, 2005.

    Google Scholar 

  9. Chebotareva, I.Ya., Seismic Emission Tomography Algorithm for Weak Space Correlation of Sigbak, Vestn. MGOU, Series: Natural Sciences, 2011. vol. 1.

    Google Scholar 

  10. Witten, B., Artman, В., and Podladtchikov, I., Source Location Using Time-Reverse Imaging, Geophysical Prospecting, 2010, vol. 58, no. 5.

    Google Scholar 

  11. Witten, B. and Artman, B., Signal-to-Noise Estimates of Time-Reverse Images, Geophysics, 2011, vol. 76, no. 2.

    Google Scholar 

  12. Grechka, V. and Yaskevich, S., Azimuthal Anisotropy in Microseismic Monitoring: A Bakken Case Study, Geophysics, 2014, vol. 79, no. 1.

    Google Scholar 

  13. Skazka, V.V., Serdyukov, S.V., and Serdyukov, A.S., Modleing Microseismic Noise in Block Rock Masses, Vestn. BFU, 2013, no. 4.

    Google Scholar 

  14. Pe, Z., Fu, L.Y., Sun, W., Jiang, T., and Zhou, B., Anisotropic Finite-Difference Algorithm for Modeling Elastic Wave Propagation in Fractured Coalbeds, Geophysics, 2012, vol. 77, no. 1.

    Google Scholar 

  15. Kurlenya, M.V., Serdyukov, A.S., Serdyukov, S.V., and Cheverda, V.A., Seismic Approach to Location of Methane Accumulation Zones in a Coal Seam, J. Min. Sci., 2010, vol. 46, no. 6, pp. 621–629.

    Article  Google Scholar 

  16. Thomsen, L., Weak Elastic Anisotropy, Geophysics, 1986, vol. 51, no. 10.

    Google Scholar 

  17. Aki, K. and Richards, P.G., Quantitative Seismology, University Science Books, Sausalito, CA, 2002. vol. 1.

    Google Scholar 

  18. Virieuxm, J., P–SV Wave Propagation in Heterogeneous Media: Velocity–Stress Finite–Difference Method, Geophysics, 1986, vol. 51, no. 4.

    Google Scholar 

  19. Bohlen, T., Parallel 3-D Viscoelastic Finite Difference Seismic Modeling, Computers & Geosciences, 2002, vol. 28, no. 8.

    Google Scholar 

  20. Coutant, O., Virieux, J., Zollo, A., Numerical Source Implementation in а 2D Finite Difference Scheme for Wave Propagation, Bulletin of the Seismological Society of America, 1995, vol. 85, no. 5.

    Google Scholar 

  21. Sadovsky, M.A., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kurlenya.

Additional information

Original Russian Text © M.V. Kurlenya, A.S. Serdyukov, A.V. Azarov, A.A. Nikitin, 2015, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2015, No. 4, pp. 61–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurlenya, M.V., Serdyukov, A.S., Azarov, A.V. et al. Numerical modeling of wavefields of microseismic events in underground mining. J Min Sci 51, 689–695 (2015). https://doi.org/10.1134/S1062739115040052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739115040052

Keywords

Navigation