Skip to main content
Log in

Pregastrular Development of Amphibians: Ontogenetic Diversity and Eco-Devo

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Comparative and ecological aspects of the reorganizations of early development in the class Amphibia are analyzed. We used data on the developmental diversity in a number of families belonging to the orders Anura and Caudata, in which many species had lost their connection with the aquatic environment. Model representatives of the class Amphibia (Ambystoma mexicanum, Rana temporaria, and Xenopus laevis) have small eggs (no more than 2.5 mm in diameter). In these species, the slowdown in the rate of cell divisions and the loss of synchrony occur at the midblastula stage. However, phylogenetically basal amphibian species (Ascaphus truei, Cryptobranchus alleganiensis) are characterized by the large (4–6 mm in diameter) yolky eggs and a short series of synchronous blastomere divisions (the synchrony is already lost at the 8-cell stage of cleavage). They do not have a “midblastula transition,” which is characteristic of the above model species. On the other hand, many evolutionarily advanced non-model species of caudate and anuran amphibians (for example, Desmognathus fuscus, Gastrotheca riobambae, Philoria sphagnicolus), as well as the basal species, are characterized by the large, yolk-rich eggs and the early loss of cell division synchrony. Phylogenetic analysis suggests that the cleavage pattern of the most extensively studied amphibians, the Mexican axolotl (Caudata) and the African clawed frog (Anura), represents a homoplasy. The midblastula transition, which is characteristic of these two species, might have evolved convergently in these two orders of amphibians as an embryonic adaptation to development in lentic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. AmphibiaWeb. Information on amphibian biology and conservation, Berkeley (California). http://amphibiaweb.org/. 2022. Accessed September 12, 2022.

  2. Andéol., Y., Early transcription in different animal species: implication for transition from maternal to zygotic control in development, Wilhelm Roux’s Arch. Dev. Biol., 1994, vol. 204, no. 1, pp. 3–10.

    Article  Google Scholar 

  3. Barresi, M.J.F. and Gilbert, S.F., Developmental Biology, New York: Oxford Univ. Press, 2020, 12th ed.

    Google Scholar 

  4. de Bavay, J.M., The developmental stages of the sphagnum frog, Kyarranus sphagnicolus Moore (Anura: Myobatrachidae), Aust. J. Zool., 1993, vol. 41, no. 2, pp. 151–201.

    Article  Google Scholar 

  5. Brauer, A., Beitrӓge zur Kenntniss der Entwicklung und Anatomie der Gymnophionen. II. Die Entwicklung der äussern Form, Zool. Jahrb. Anat., 1899, vol. 12, no. 3, pp. 477–508.

    Google Scholar 

  6. Briggs, R., Further studies on the maternal effect of the o gene in the Mexican axolotl, J. Exp. Zool., 1972, vol. 181, no. 2, pp. 271–280.

    Article  CAS  PubMed  Google Scholar 

  7. Brinkmann, H., Venkatesh, B., Brenner, S., et al., Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 14, pp. 4900–4905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, H.A., Temperature and development of the tailed frog, Ascaphus truei, Comp. Biochem. Physiol., 1975, vol. 50, no. 2, pp. 397–405.

    Article  CAS  Google Scholar 

  9. Brown, H.A., Developmental anatomy of the tailed frog (Ascaphus truei): a primitive frog with large eggs and slow development, J. Zool. (London), 1989, vol. 217, no. 4, pp. 525–537.

    Article  Google Scholar 

  10. Buckley, D., Alcobendas, M., Garcia-Paris, M., et al., Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra, Evol. Dev., 2007, vol. 9, no. 1, pp. 105–115.

    Article  PubMed  Google Scholar 

  11. de Bussy, L.P., Die ersten Entwicklungsstadien des Megalobatrachus maximus, Zool. Anz., 1905, vol. 28, pp. 523–536.

    Google Scholar 

  12. Callery, E.M., There’s more than one frog in the pond: a survey of the Amphibia and their contributions to developmental biology, Semin. Cell Dev. Biol., 2006, vol. 17, no. 1, pp. 80–92.

    Article  PubMed  Google Scholar 

  13. Callery, E.M., Fang, H., and Elinson, R.P., Frogs without polliwogs: evolution of anuran direct development, BioEssays, 2001, vol. 23, no. 3, pp. 233–241.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee, S. and Elinson, R.P., Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression, J. Exp. Zool., B: Mol. Dev. Evol., 2014, vol. 322, no. 1, pp. 27–44.

    Article  CAS  PubMed  Google Scholar 

  15. Collart, C., Smith, J.C., and Zegerman, P., Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition, Dev. Cell, 2017, vol. 42, no. 1, pp. 82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collazo, A. and Keller, R., Early development of Ensatina eschscholtzii: an amphibian with a large, yolky egg, EvoDevo, 2010, vol. 1, no. 6. https://doi.org/10.1186/2041-9139-1-6

  17. Collazo, A. and Marks, S.B., Development of Gyrinophilus porphyriticus: identification of the ancestral developmental pattern in the salamander family Plethodontidae, J. Exp. Zool., 1994, vol. 268, no. 3, pp. 239–258.

    Article  Google Scholar 

  18. Desnitskiy, A.G., Evolutionary reorganizations of ontogenesis in related frog species of the family Myobatrachidae, Russ. J. Dev. Biol., 2010, vol. 41, no. 3, pp. 133–138.

    Article  Google Scholar 

  19. Desnitskiy, A.G., On the diversity of the primary steps of embryonic development in the caudate amphibians, Russ. J. Dev. Biol., 2011, vol. 42, no. 4, pp. 207–211.

    Article  Google Scholar 

  20. Desnitskiy, A.G., On the diversity of the initial steps of embryonic development in anuran amphibians, Russ. J. Herpetol., 2012, vol. 19, no. 3, pp. 221–231.

    Google Scholar 

  21. Desnitskiy, A.G., On the classification of the cleavage patterns in amphibian embryos, Russ. J. Dev. Biol., 2014, vol. 45, no. 1, pp. 1–10.

    Article  Google Scholar 

  22. Desnitskiy, A.G., On the features of embryonic cleavage in diverse fish species, Russ. J. Dev. Biol., 2015, vol. 46, no. 6, pp. 326–332.

    Article  Google Scholar 

  23. Desnitskiy, A.G., Cell cycles during early steps of amphibian embryogenesis: a review, Biosystems, 2018, vol. 173, pp. 100–103.

    Article  PubMed  Google Scholar 

  24. Desnitskiy, A.G., Diversity of the Initial Steps of Embryogenesis in Amphibians, St. Petersburg: Lan’, 2019.

  25. Desnitskiy, A.G., Surface contraction waves or cell proliferation waves in the presumptive neurectoderm during amphibian gastrulation: Mexican axolotl versus African clawed frog, Biosystems, 2020, vol. 198, p. 104286. https://doi.org/10.1016/j.biosystems.2020.104286

    Article  PubMed  Google Scholar 

  26. Desnitskiy, A.G. and Litvinchuk, S.N., Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians, Zygote, 2015, vol. 23, no. 5, pp. 722–731.

    Article  PubMed  Google Scholar 

  27. Dettlaff, T.A., Temperature and Time Patterns of Development of Poikilothermal Animals, Moscow: Nauka, 2001.

    Google Scholar 

  28. Dettlaff, T.A. and Vassetzky, S.G., Animal Species for Developmental Studies: Vertebrates, New York: Consultants Bureau, 1991, vol. 2. https://doi.org/10.1007/978-1-4615-3654-3

  29. Duellman, W.E., Reproductive modes in anuran amphibians: phylogenetic significance of adaptive strategies, South Afr. J. Sci., 1985, vol. 81, pp. 174–178.

    Google Scholar 

  30. Duellman, W.E., Alternative life-history styles in anuran amphibians: evolutionary and ecological implications, in Alternative Life-History Styles of Animals, Bruton, M.N., Ed., Dordrecht (Netherlands): Kluwer Acad. Publ., 1989, pp. 101–126.

    Google Scholar 

  31. Duellman, W.E. and Trueb, L., The Biology of Amphibians, Baltimore: Johns Hopkins Univ. Press, 1994.

  32. Dünker, N., Wake, M.H., and Olson, W.M., Embryonic and larval development in the Caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). A staging table, J. Morphol., 2000, vol. 243, no. 1, pp. 3–34.

    Article  PubMed  Google Scholar 

  33. Elinson, R.P., Direct development in frogs: wiping the recapitulationist slate clean, Semin. Dev. Biol., 1990, vol. 1, pp. 263–270.

    Google Scholar 

  34. Elinson, R.P., Nutritional endoderm: a way to breach the holoblastic–meroblastic barrier in tetrapods, J. Exp. Zool., 2009, vol. 312, no. 6, pp. 526–532.

    Article  Google Scholar 

  35. Elinson, R.P., Metamorphosis in a frog that does not have a tadpole, Curr. Top. Dev. Biol., 2013, vol. 103, pp. 259–276.

    Article  CAS  PubMed  Google Scholar 

  36. Elinson, R.P., Development of a non-amphibious amphibian—an interview with a coqui, Int. J. Dev. Biol., 2021, vol. 65, nos. 1–3, pp. 171–176.

    Article  PubMed  Google Scholar 

  37. Elinson, R.P. and del Pino, E.M., Cleavage and gastrulation in the egg-brooding, marsupial frog, Gastrotheca riobambae, J. Embryol. Exp. Morphol., 1985, vol. 90, pp. 223–232.

    CAS  PubMed  Google Scholar 

  38. Elinson, R.P. and del Pino, E.M., Developmental diversity of amphibians, Wiley Interdiscip. Rev.: Dev. Biol., 2012, vol. 1, no. 3, pp. 345–369.

    Article  CAS  PubMed  Google Scholar 

  39. Elinson, R.P., del Pino, E.M., Townsend, D.S., et al., A practical guide to the developmental biology of terrestrial-breeding frogs, Biol. Bull., 1990, vol. 179, no. 2, pp. 163–177.

    Article  CAS  PubMed  Google Scholar 

  40. Elinson, R.P., Sabo, M.C., Fisher, C., et al., Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs, Evodevo, 2011, vol. 2, p. 20. https://doi.org/10.1186/2041-9139-2-20

    Article  PubMed  PubMed Central  Google Scholar 

  41. Exbrayat, J.-M., Fertilization and embryonic development, in Reproductive Biology and Phylogeny of Gymnophiona (Caecilians), Exbrayat, J.-M., Ed., Enfield (New Hampshire, USA): Science Publishers, 2006, pp. 359–386.

    Google Scholar 

  42. Eycleshymer, A.C., Bilateral symmetry in the egg of Necturus, Anat. Anz., 1904, vol. 25, pp. 230–240.

    Google Scholar 

  43. Eycleshymer, A.C. and Wilson, J.M., Normal Plates of the Development of Necturus maculosus, Jena (Germany): Verlag von Gustav Fischer, 1910.

    Google Scholar 

  44. Gasser, F., Observations sur les stades initiaux du développement de l’ urodèle Pyrénéen Euproctus asper, Bull. Soc. Zool. Fr., 1964, vol. 89, pp. 423–428.

    Google Scholar 

  45. Gitlin, D., The development of Eleutherodactylus portoricensis, Copeia, 1944, vol. 1944, no. 2, pp. 91–98.

    Article  Google Scholar 

  46. Gomes, A.D., Moreira, R.G., Navas, C.A., et al., Review of the reproductive biology of caecilians (Amphibia, Gymnophiona), South Am. J. Herpetol., 2012, vol. 7, no. 3, pp. 191–202.

    Article  Google Scholar 

  47. Gomez-Mestre, I., Pyron, R.A., and Wiens, J.J., Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs, Evolution, 2012, vol. 66, no. 12, pp. 3687–3700.

    Article  PubMed  Google Scholar 

  48. Goodale, H.D., The early development of Spelerpes bilineatus (Green), Am. J. Anat., 1911, vol. 12, pp. 173–247.

    Article  Google Scholar 

  49. Grönroos, H., Zur Entwickelungsgeschichte des Erdsalamanders (Salamandra maculosa Laur.), Anat. Hefte, 1895, vol. 6, pp. 153–247.

    Article  Google Scholar 

  50. Haddad, C.F.B. and Prado, C.P.A., Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil, BioScience, 2005, vol. 55, no. 3, pp. 207–217.

    Article  Google Scholar 

  51. Hedges, S.B., Duellman, W.E., and Heinicke, M.P., New world direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation, Zootaxa, 2008, no. 1737, pp. 1–182.

  52. Heinicke, M.P., Duellman, W.E., and Hedges, S.B., Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal, Proc. Nat. Acad. Sci. U. S. A., 2007, vol. 104, no. 24, pp. 10092–10097.

    Article  CAS  Google Scholar 

  53. Heinicke, M.P., Lemmon, A.R., Lemmon, E.M., et al., Phylogenomic support for evolutionary relationships of new world direct-developing frogs (Anura: Terraranae), Mol. Phylogenet. Evol., 2018, vol. 118, pp. 145–155.

    Article  CAS  PubMed  Google Scholar 

  54. Hilton, W.A., Segmentation of the ovum of Desmognathus fusca, Am. Nat., 1904, vol. 38, nos. 451–452, pp. 498– 500.

    Google Scholar 

  55. Hirsch, N., Zimmerman, L.B., and Grainger, R.M., Xenopus, the next generation: X. tropicalis genetics and genomics, Dev. Dyn., 2002, vol. 225, no. 4, pp. 422–433.

    Article  CAS  PubMed  Google Scholar 

  56. Humphrey, R.R., Ovulation in the four-toed salamander, Hemidactylium scutatum, and the external features of cleavage and gastrulation, Biol. Bull., 1928, vol. 54, no. 4, pp. 307–323.

    Article  Google Scholar 

  57. Ivanova-Kazas, O.M., Evolutionary Embryology of Animals, St. Petersburg: Nauka, 1995.

    Google Scholar 

  58. Iwasawa, H. and Kera, Y., Normal stages of development of the Japanese lungless salamander, Onychodactylus japonicus (Houttuyn), Jpn. J. Herpetol., 1980, vol. 8, no. 3, pp. 73–89.

    Article  Google Scholar 

  59. Jiang, P., Nelson, J.D., Leng, N., et al., Analysis of embryonic development in the unsequenced axolotl: waves of transcroptomic upheaval and stability, Dev. Biol., 2017, vol. 426, no. 2, pp. 143–154.

    Article  CAS  PubMed  Google Scholar 

  60. Karadge, U. and Elinson, R.P., Characterization of the nutritional endoderm in the direct developing frog Eleutherodactylus coqui, Dev., Genes Evol., 2013, vol. 223, no. 6, pp. 351–362.

    Article  CAS  PubMed  Google Scholar 

  61. Keller, R. and Shook, D.R., Gastrulation in amphibians, in Gastrulation: From Cells to Embryo, Stern, C.D., Ed., Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2004, pp. 171–203.

    Google Scholar 

  62. Kemp, A., The embryological development of the Queensland lungfish, Neoceratodus forsteri (Krefft), Mem. Queensland Mus., 1982, vol. 20, pp. 553–597.

    Google Scholar 

  63. Kershaw, F., Joss, G.H., and Joss, J.M.P., Early development in Sarcopterygian fishes, in Development of Non-Teleost Fishes, Kunz, Y.W., Luer, C.A., and Kapoor, B.G., Eds., Enfield (NH, USA): Sci. Publ., 2009, pp. 275–289.

    Google Scholar 

  64. Kunitomo, K., Über die Entwickelungsgeschichte des Hynobius nebulosus, Anat. Hefte, 1910, vol. 40, pp. 193–283.

    Article  Google Scholar 

  65. Lefresne, J., Andéol., Y., and Signoret, J., Evidence for introduction of a variable G1 phase at the midblastula transition during early development in axolotl, Dev. Growth Differ., 1998, vol. 40, no. 5, pp. 497–508.

    Article  CAS  PubMed  Google Scholar 

  66. Liang, D., Shen, X.X., and Zhang, P., One thousand two hundred ninety nuclear genes from a genome-wide survey support lungfishes as the sister group of tetrapods, Mol. Biol. Evol., 2013, vol. 30, no. 8, pp. 1803–1807.

    Article  CAS  PubMed  Google Scholar 

  67. Liedtke, H.C., Wiens, J.J., and Gomez-Mestre, I., The evolution of reproductive modes and life cycles in amphibians, Nat. Commun., 2022, vol. 13, p. 7039. https://doi.org/10.1038/s41467-022-34474-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Lima, A.V., Reis, A.H., Amado, N.G., et al., Developmental aspects of the direct-developing frog Adelophryne maranguapensis, Genesis, 2016, vol. 54, no. 5, pp. 257–271.

    Article  CAS  PubMed  Google Scholar 

  69. Luo, J., Xiao, Y., Luo, K., et al., Embryonic development and organogenesis of Chinese giant salamander, Andrias davidianus, Progr. Nat. Sci., 2007, vol. 17, pp. 1303–1311.

    Google Scholar 

  70. Lutz, B., Trends towards non-aquatic and direct development in frogs, Copeia, 1947, vol. 1947, no. 4, pp. 242–252.

    Article  Google Scholar 

  71. Lynn, W.G., The embryology of Eleutherodactylus nubicola, an anuran which has no tadpole stage, Contributions to Embryology, Washington, DC: Carnegie Inst., 1942, vol. 190, pp. 27–62.

    Google Scholar 

  72. Marks, S.B. and Collazo, A., Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table, Copeia, 1998, vol. 1998, no. 3, pp. 637–648.

    Article  Google Scholar 

  73. Morgan, T.H., The Development of the Frog’s Egg: An Introduction to Experimental Embryology, New York: MacMillan Co., 1897.

    Book  Google Scholar 

  74. Moya, I.M., Alarcon, I., and del Pino, E.M., Gastrulation of Gastrotheca riobambae in comparison with other frogs, Dev. Biol., 2007, vol. 304, no. 2, pp. 467–478.

    Article  CAS  PubMed  Google Scholar 

  75. Nelsen, O.E., Comparative Embryology of the Vertebrates, New York: McGraw-Hill Book Co., 1953.

    Google Scholar 

  76. Newport, J. and Kirschner, M., A major developmental transition in early Xenopus embryos: 1. Characterization and timing of cellular changes at the midblastula stage, Cell, 1982, vol. 30, no. 3, pp. 675–686.

    Article  CAS  PubMed  Google Scholar 

  77. Nieuwkoop, P.D., The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action, Adv. Morphogen., 1973, vol. 10, pp. 1–39.

    Article  CAS  Google Scholar 

  78. Nieuwkoop, P.D., What are the key advantages and disadvantages of urodele species compared to anurans as a model system for experimental analysis of early development?, Int. J. Dev. Biol., 1996, vol. 40, no. 4, pp. 617–619.

    CAS  PubMed  Google Scholar 

  79. Nieuwkoop, P.D. and Faber, J., Normal Table of Xenopus laevis (Daudin): Systematic and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis, New York: Garland Publ. Inc., 1994.

    Google Scholar 

  80. Noble, G.K., The value of life history data in the study of the evolution of the Amphibia, Ann. N.Y. Acad. Sci., 1927, vol. 30, no. 1, pp. 31–128.

    Article  Google Scholar 

  81. Nunes-de-Almeida, C.H.L., Haddad, C.F.B., and Toledo, L.F., A revised classification of the amphibian reproductive modes, Salamandra, 2021, vol. 57, no. 3, pp. 413–427.

    Google Scholar 

  82. Padial, J.M., Grant, T., and Frost, D.R., Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria, Zootaxa, 2014, vol. 3825, no. 1, pp. 1–132.

    Article  PubMed  Google Scholar 

  83. Pérez, O.D., Lai, N.B., Buckley, D., et al., The morphology of prehatching embryos of Caecilia orientalis (Amphibia: Gymnophiona: Caeciliidae), J. Morphol., 2009, vol. 270, no. 12, pp. 1492–1502.

    Article  PubMed  Google Scholar 

  84. Pereira, E.B., Pinto-Ledezma, J.N., De Freitas, C.G., et al., Evolution of the anuran foam nest: trait conservatism and lineage diversification, Biol. J. Linn. Soc., 2017, vol. 122, no. 4, pp. 814–823.

    Article  Google Scholar 

  85. del Pino, E.M., Modifications of oogenesis and development in marsupial frogs, Development, 1989, vol. 107, no. 2, pp. 169–187.

    Article  CAS  PubMed  Google Scholar 

  86. del Pino, E.M., The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals, Mech. Dev., 2018, vol. 154, pp. 2–11.

    Article  CAS  PubMed  Google Scholar 

  87. del Pino, E.M., Embryogenesis of marsupial frogs (Hemiphractidae), and the changes that accompany terrestrial development in frogs, Res. Probl. Cell Differ., 2019, vol. 68, pp. 379–418.

    Article  CAS  Google Scholar 

  88. del Pino, E.M., From egg to embryo in marsupial frogs, Curr. Top. Dev. Biol., 2021, vol. 145, pp. 91–109.

    Article  PubMed  Google Scholar 

  89. del Pino, E.M. and Elinson, R.P., The organizer in amphibians with large eggs: problems and perspectives, in The Vertebrate Organizer, Grunz, H., Ed., Berlin: Springer, 2003, pp. 359–374.

    Google Scholar 

  90. del Pino, E.M. and Escobar, B., Embryonic stages of Gastrotheca riobambae (Fowler) during maternal incubation and comparison of development with that of other egg-brooding Hylid frogs, J. Morphol., 1981, vol. 167, no. 3, pp. 277–295.

    Article  CAS  PubMed  Google Scholar 

  91. del Pino, E.M. and Loor-Vela, S., The pattern of early cleavage of the marsupial frog Gastrotheca riobambae, Development, 1990, vol. 110, pp. 781–789.

    Article  CAS  PubMed  Google Scholar 

  92. del Pino, E.M., Venegas-Ferrin, M., Romero-Carvajal, A., et al., A comparative analysis of frog early development, Proc. Nat. Acad. Sci. U. S. A, 2007, vol. 104, no. 29, pp. 11882–11888.

    Article  CAS  Google Scholar 

  93. Pyron, R.A. and Wiens, J.J., A large-scale phylogeny of amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians, Mol. Phylogenet. Evol., 2011, vol. 61, no. 2, pp. 543–583.

    Article  PubMed  Google Scholar 

  94. Rugh, R., The Frog; Its Reproduction and Development, Philadelphia: Blakiston Comp., 1951.

    Book  Google Scholar 

  95. Rugh, R., Experimental Embryology. Techniques and Procedures, Minneapolis (Minnesota): Burgess Publ. Com., 1962, 3rd ed.

    Book  Google Scholar 

  96. Sammouri, R., Renous, S., Exbrayat, J.M., et al., Développement embryonnaire de Typhlonectes compressicaudus (Amphibia, Gymnophiona), Ann. Sci. Nat. Zool. (Paris), 1990, vol. 11, no. 3, pp. 135–163.

    Google Scholar 

  97. Sampson, L.V., Unusual modes of breeding and development among Anura, Am. Nat., 1900, vol. 34, no. 405, pp. 687–715.

    Article  Google Scholar 

  98. Sampson, L.V., A contribution to the embryology of Hylodes martinicensis, Am. J. Anat., 1904, vol. 3, no. 4, pp. 473–504.

    Article  Google Scholar 

  99. San Mauro, D., A multilocus timescale for the origin of extant amphibians, Mol. Phylogenet. Evol., 2010, vol. 56, no. 2, pp. 554–561.

    Article  PubMed  Google Scholar 

  100. Sarasin, P. and Sarasin, F., Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon in den Jahren 1884–1886, Band 2, Heft 1, Zur Entwicklungsgeschichte und Anatomie der ceylonesischen Blindwȕhle Ichthyophis glutinosus, Teil 1: Einleitung das Ei, Befruehtung und Brutpflege, Entwicklung der Körperform, Historisches, Systematisches und Vergleichendes, Wiesbaden: C.W. Kreidel’s Verlag, 1887, pp. 1–40 + Tafeln 1–5.

  101. Scherz, M.D., Vences, M., Rakotoarison, A., et al., Reconciling molecular phylogeny, morphological divergence and classification of Madagascan narrow-mouthed frogs (Amphibia: Microhylidae), Mol. Phylogenet. Evol., 2016, vol. 100, pp. 372–381.

    Article  PubMed  Google Scholar 

  102. Schmid, M., Steinlein, C., Bogart, J.P., et al., The hemiphractid frogs: phylogeny, embryology, life history, and cytogenetics (review), Cytogenet. Genome Res., 2012, vol. 138, nos. 2–4, pp. 69–367.

    Article  CAS  PubMed  Google Scholar 

  103. Shen, X.X., Liang, D., Feng, Y.J., et al., A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata, Mol. Biol. Evol., 2013, vol. 30, no. 10, pp. 2235–2248.

    Article  CAS  PubMed  Google Scholar 

  104. Signoret, J., Evidence of the first genetic activity required in axolotl development, Res. Probl. Cell Differ., 1980, vol. 11, pp. 71–74.

    Article  CAS  Google Scholar 

  105. Signoret, J. and Collenot, A., L’organisme en développement. Des gamètes à l’embryon, Paris: Hermann, 1991.

    Google Scholar 

  106. Signoret, J. and Lefresne, J., Contribution a l’etude de la segmentation de l’oeuf d’axolotl: 1. Definition de la transition blastuleenne, Ann. Embryol. Morphogen., 1971, vol. 4, no. 2, pp. 113–123.

    Google Scholar 

  107. Smith, B.G., Preliminary report on the embryology of Cryptobranchus allegheniensis, Biol. Bull., 1906, vol. 11, no. 3, pp. 146–164.

    Article  Google Scholar 

  108. Smith, B.G., The origin of bilateral symmetry in the embryo of Cryptobranchus allegheniensis, J. Morphol., 1922, vol. 36, no. 3, pp. 357–399.

    Article  Google Scholar 

  109. Smith, B.G., The embryology of Cryptobranchus allegheniensis. 3. Formation of the blastula, J. Morphol. Physiol., 1926, vol. 42, no. 1, pp. 197–252.

    Article  Google Scholar 

  110. Spemann, H., Embryonic Development and Induction, New Haven: Yale Univ. Press, 1938.

    Book  Google Scholar 

  111. Streicher, J.W., Miller, E.C., Guerrero, P.C., et al., Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci, Mol. Phylogenet. Evol., 2018, vol. 119, pp. 128–143.

    Article  CAS  PubMed  Google Scholar 

  112. Svensson, G.S.O., Zur Kenntnis der Furchung bei den Gymnophionen, Acta Zool. (Stockholm), 1938, vol. 19, nos. 1–2, pp. 191–207.

    Article  Google Scholar 

  113. Sytina, L.A., Medvedeva, I.M., and Godina, L.B., Development of Siberian Newt, Moscow: Nauka, 1987.

    Google Scholar 

  114. Tarkhnishvili, D.N. and Serbinova, I.A., Normal development of the Caucasian salamander (Mertensiella caucasica), Adv. Amphib. Res. Former Soviet Union, 1997, vol. 2, pp. 13–30.

    Google Scholar 

  115. Toivonen, S., Tarin, D., Saxen, L., et al., Transfilter studies on neural induction in the newt, Differentiation, 1975, vol. 4, no. 1, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  116. Vastenhouw, N.L., Cao, W.X., and Lipshitz, H.D., The maternal-to-zygotic transition revisited, Development, 2019, vol. 146, p. dev161471. https://doi.org/10.1242/dev.161471

    Article  CAS  PubMed  Google Scholar 

  117. Vieites, D., Roman, S.N., Wake, M.H., et al., A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae, Mol. Phylogenet. Evol., 2011, vol. 59, pp. 623–635.

    Article  PubMed  Google Scholar 

  118. Wake, D.B. and Hanken, J., Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis?, Int. J. Dev. Biol., 1996, vol. 40, no. 4, pp. 859–869.

    CAS  PubMed  Google Scholar 

  119. Wake, M.H., Fetal adaptations for viviparity in amphibians, J. Morphol., 2015, vol. 276, no. 8, pp. 941–960.

    Article  PubMed  Google Scholar 

  120. Zhang, M., Skirkanich, J., Lampson, M.A., et al., Cell cycle remodeling and zygotic gene activation at the midblastula transition, Adv. Exp. Med. Biol., 2017, vol. 953, pp. 441–487.

    Article  CAS  PubMed  Google Scholar 

  121. Zheng, Y., Peng, R., Murphy, R.W., et al., Matrilineal genealogy of Hynobius (Caudata: Hynobiidae) and a temporal perspective on varying levels of diversity among lineages of salamanders on the Japanese islands, Asian Herpetol. Res., 2012, vol. 3, no. 4, pp. 288–302.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The article is devoted to the centenary of the creation by Professor P.P. Ivanov of the Division of Embryology—the predecessor of the Department of Embryology of Saint-Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Desnitskiy.

Ethics declarations

The author declares that he has no conflicts of interest.

In preparing this review, humans and animals were not used as objects of experimental research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desnitskiy, A.G. Pregastrular Development of Amphibians: Ontogenetic Diversity and Eco-Devo. Russ J Dev Biol 54, 113–125 (2023). https://doi.org/10.1134/S1062360423020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360423020029

Keywords:

Navigation