Skip to main content
Log in

The Role of the Basal Ganglia in the Development and Organization of Vocal Behavior in Songbirds

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The basal ganglia play an important role in the development of motor behavior; however, the mechanisms and specificity of their role in the processes of learning and movement organization are not clear, and the hypothesis about the computations of dopaminergic modulation of the basal ganglia is very controversial. The behavioral model of song learning in songbirds is invaluable in clarifying many of the key questions about these issues. The data reviewed in this paper suggest that an active variability generator is built into the structure of the basal ganglia to provide an adaptive level of behavioral stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aamodt, C.M., Farias-Virgens, M., and White, S.A., Birdsong as a window into language origins and evolutionary neuroscience, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1789, article ID 20190060. https://doi.org/10.1098/rstb.2019.0060

  2. Ali, F., Otchy, T.M., Pehlevan, C., et al., The basal ganglia is necessary for learning spectral, but not temporal, features of birdsong, Neuron, 2013, vol. 80, no. 2, pp. 494–506. https://doi.org/10.1016/j.neuron.2013.07.049

  3. Andalman, A.S. and Fee, M.S., A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 30, pp. 12518–12523. https://doi.org/10.1073/pnas.0903214106

  4. Aronov, D., Andalman, A.S., and Fee, M.S., A specialized forebrain circuit for vocal babbling in the juvenile songbird, Science, 2008, vol. 320, no. 5876, pp. 630–634. https://doi.org/10.1126/science.1155140

  5. Bernshtein, N.A., O postroenii dvizhenii (On the Construction of Movements), Moscow: Nauka, 1947.

  6. Bottjer, S.W., The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches, J. Neurobiol., 1993, vol. 24, no. 1, pp. 51–69. https://doi.org/10.1002/neu.480240105

  7. Brainard, M.S. and Doupe, A.J., Auditory feedback in learning and maintenance of vocal behavior, Nat. Rev. Neurosci., 2000, vol. 1, no. 1, pp. 31–40. https://doi.org/10.1038/35036205

  8. Budzillo, A., Duffy, A., Miller, K.E., et al., Dopaminergic modulation of basal ganglia output through coupled excitation-inhibition, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 22, pp. 5713–5718. https://doi.org/10.1073/pnas.1611146114

  9. Caveney, S., Cladman, W., Verellen, L., et al., Ancestry of neuronal monoamine transporters in the Metazoa, J. Exp. Biol., 2006, vol. 209, pp. 4858–4868. https://doi.org/10.1242/jeb.02607

  10. Charlesworth, J.D., Warren, T.L., and Brainard, M.S., Covert skill learning in a cortical-basal ganglia circuit, Nature, 2012, vol. 486, no. 7402, pp. 251–255. https://doi.org/10.1038/nature11078

  11. Chen, R., Puzerey, P.A., and Roeser, A.C., Songbird ventral pallidum sends diverse performance error signals to dopaminergic midbrain, Neuron, 2019, vol. 103, no. 2, pp. 266–276, article ID e4. https://doi.org/10.1016/j.neuron.2019.04.038

  12. Chen, R., Gadagkar, V., Roeser, A.C., et al., Movement signaling in ventral pallidum and dopaminergic midbrain is gated by behavioral state in singing birds, J. Neurophysiol., 2021, vol. 125, no. 6, pp. 2219–2227. https://doi.org/10.1152/jn.00110.2021

  13. Churchland, M.M., Afshar, A., and Shenoy, K.V., A central source of movement variability, Neuron, 2006, vol. 52, no. 6, pp. 1085–1096. https://doi.org/10.1016/j.neuron.2006.10.034

  14. Coddington, L.T. and Dudman, J.T., Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity, Neuron, 2019, vol. 104, no. 1, pp. 63–77. https://doi.org/10.1016/j.neuron.2019.08.036

  15. Dhawale, A.K., Smith, M.A., and Ölveczky, B.P., The role of variability in motor learning, Annu. Rev. Neurosci., 2017, vol. 40, pp. 479–498. https://doi.org/10.1146/annurev-neuro-072116-031548

  16. Duffy, A., Abe, E., Perkel, D.J., et al., Variation in sequence dynamics improves maintenance of stereotyped behavior in an example from bird song, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 19, pp. 9592–9597. https://doi.org/10.1073/pnas.1815910116

  17. Gadagkar, V., Puzerey, P.A., Chen, R., et al., Dopamine neurons encode performance error in singing birds, Science, 2016, vol. 354, no. 6317, pp. 1278–1282. https://doi.org/10.1126/science.aah6837

  18. Haar, S., Donchin, O., and Dinstein, I., Individual movement variability magnitudes are explained by cortical neural variability, J. Neurosci., 2017, vol. 37, no. 37, pp. 9076–9085. https://doi.org/10.1523/JNEUROSCI.1650-17.2017

  19. Heston, J.B. Simon, J., 4th, Day, N.F., et al., Bidirectional scaling of vocal variability by an avian cortico-basal ganglia circuit, Physiol. Rep., 2018, vol. 6, no. 8, article ID e13638. https://doi.org/10.14814/phy2.13638

  20. Hoffmann, L.A., Saravanan, V., Wood, A.N., et al., Dopaminergic contributions to vocal learning, J. Neurosci., 2016, vol. 36, no. 7, pp. 2176–2189. https://doi.org/10.1523/JNEUROSCI.3883-15.2016

  21. Ivlieva, N.Yu., The role of the striatum in the organization of voluntary movement, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2021, vol. 30, no. 2, pp. 164–183. https://doi.org/10.31857/S00444677210200522021

  22. James, S.S., Papapavlou, C., Blenkinsop, A., et al., Integrating brain and biomechanical models—a new paradigm for understanding neuro-muscular control, Front. Neurosci., 2018, vol. 12, p. 39. https://doi.org/10.3389/fnins.2018.00039

  23. Jarvis, E.D., Learned birdsong and the neurobiology of human language, Ann. N.Y. Acad. Sci., 2004, vol. 1016, pp. 749–777. https://doi.org/10.1196/annals.1298.038

  24. Jarvis, E.D., Güntürkün, O., Bruce, L., et al., Avian brains and a new understanding of vertebrate brain evolution, Nat. Rev. Neurosci., 2005, vol. 6, no. 2, pp. 151–159. https://doi.org/10.1038/nrn1606

  25. Kao, M.H., Doupe, A.J., and Brainard, M.S., Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song, Nature, 2005, vol. 433, no. 7026, pp. 638–643. https://doi.org/10.1038/nature03127

  26. Kearney, M.G., Warren, T.L., Hisey, E., et al., Discrete evaluative and premotor circuits enable vocal learning in songbirds, Neuron, 2019, vol. 104, no. 3, pp. 559–575. article ID e6. https://doi.org/10.1016/j.neuron.2019.07.025

  27. Kim, Y., Kwon, S., Rajan, R., et al., Intrinsic motivation for singing in songbirds is enhanced by temporary singing suppression and regulated by dopamine, Sci. Rep., 2021, vol. 11, no. 1, article ID 20350. https://doi.org/10.1038/s41598-021-99456-w

  28. Leblois, A., Wendel, B.J., and Perkel, D.J., Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors, J. Neurosci., 2010, vol. 30, pp. 5730–5743. https://doi.org/10.1523/JNEUROSCI.5974-09.2010

  29. Lerner, T.N., Holloway, A.L., and Seiler, J.L., Dopamine, updated: reward prediction error and beyond, Curr. Opin. Neurobiol., 2021, vol. 67, pp. 123–130. https://doi.org/10.1016/j.conb.2020.10.012

  30. Maiorov, V.I., Dopamine functions in the instrumental conditioned reflex, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2018, vol. 68, no. 4, pp. 404–414. https://doi.org/10.1134/S0044467718040093

  31. Mooney, R., Neural mechanisms for learned birdsong, Learn. Mem., 2009, vol. 16, no. 11, pp. 655–669. https://doi.org/10.1101/lm.1065209

  32. Murugan, M., Harward, S., Scharff, C., et al., Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability, Neuron, 2013, vol. 80, pp. 1464–1476.

    Article  CAS  Google Scholar 

  33. Ölveczky, B.P., Andalman, A.S., and Fee, M.S., Vocal experimentation in the juvenile songbird requires a basal ganglia circuit, PLoS Biol., 2005, vol. 3, no. 5, article ID e153. https://doi.org/10.1371/journal.pbio.0030153

  34. Ölveczky, B.P., Otchy, T.M., Goldberg, J.H., et al., Changes in the neural control of a complex motor sequence during learning, J. Neurophysiol., 2011, vol. 106, no. 1, pp. 386–397. https://doi.org/10.1152/jn.00018.2011

  35. Perkel, D.J., Farries, M.A., Luo, M., et al., Electrophysiological analysis of a songbird basal ganglia circuit essential for vocal plasticity, Brain Res. Bull., 2002, vol. 57, nos. 3–4, pp. 529–532. https://doi.org/10.1016/s0361-9230(01)00690-6

  36. Person, A.L., Gale, S.D., Farries, M.A., and Perkel, D.J., Organization of the songbird basal ganglia, including area X, J. Comp. Neurol., 2008, vol. 508, pp. 840–866. https://doi.org/10.1002/cne.21699

  37. Reiner, A., Perkel, D.J., Bruce, L.L., et al., Revised nomenclature for avian telencephalon and some related brainstem nuclei, J. Comp. Neurol., 2004, vol. 473, no. 3, pp. 377–414. https://doi.org/10.1002/cne.20118

  38. Renart, A. and Machens, C.K., Variability in neural activity and behavior, Curr. Opin. Neurobiol., 2014, vol. 25, pp. 211–220. https://doi.org/10.1016/j.conb.2014.02.013

  39. Sánchez-Valpuesta, M., Suzuki, Y., Shibata, Y., et al., Corticobasal ganglia projecting neurons are required for juvenile vocal learning but not for adult vocal plasticity in songbirds, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 45, pp. 22833–22843. https://doi.org/10.1073/pnas.1913575116

  40. Sasaki, A., Sotnikova, T.D., Gainetdinov, R.R., et al., Social context-dependent singing-regulated dopamine, J. Neurosci., 2006, vol. 26, no. 35, pp. 9010–9014. https://doi.org/10.1523/JNEUROSCI.1335-06.2006

  41. Schultz, W., Updating dopamine reward signals, Curr. Opin. Neurobiol., 2013, vol. 23, no. 2, pp. 229–238.

    Article  CAS  Google Scholar 

  42. So, L.Y. and Miller, J.E., Social context-dependent singing alters molecular markers of synaptic plasticity signaling in finch basal ganglia area X, Behav. Brain Res., 2021, vol. 398, article ID 112955. https://doi.org/10.1016/j.bbr.2020.112955

  43. So, L.Y., Munger, S.J., and Miller, J.E., Social context-dependent singing alters molecular markers of dopaminergic and glutamatergic signaling in finch basal ganglia area X, Behav. Brain Res., 2019, vol. 360, pp. 103–112. https://doi.org/10.1016/j.bbr.2018.12.004

  44. Steinberg, E.E., Keiflin, R., Boivin, J.R., et al., A causal link between prediction errors, dopamine neurons and learning, Nat. Neurosci., 2013, vol. 16, no. 7, pp. 966–973. https://doi.org/10.1038/nn.3413

  45. Tanaka, M., Singh Alvarado, J., Murugan, M., et al., Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, pp. E1720–E1727.

    Article  CAS  Google Scholar 

  46. Tchernichovski, O., Mitra, P.P., Lints, T., et al., Dynamics of the vocal imitation process: how a zebra finch learns its song, Science, 2001, vol. 291, no. 5513, pp. 2564–2569. https://doi.org/10.1126/science.1058522

  47. Tumer, E.C. and Brainard, M.S., Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong, Nature, 2007, vol. 450, no. 7173, pp. 1240–1244. https://doi.org/10.1038/nature06390

    Article  CAS  PubMed  Google Scholar 

  48. Tyack, P.L., A taxonomy for vocal learning, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1789, article ID 20180406. https://doi.org/10.1098/rstb.2018.0406

  49. Wise, R.A., Dual roles of dopamine in food and drug seeking: the drive-reward paradox, Biol. Psychiatry, 2013, vol. 73, no. 9, pp. 819–826.pii: S0006-3223(12)00772-X. https://doi.org/10.1016/j.biopsych.2012.09.001

  50. Wise, R.A. and McDevit, R.A., Drive and reinforcement circuitry in the brain: origins, neurotransmitters, and projection fields, Neuropsychopharmacology, 2018, vol. 43, no. 4, pp. 680–689. https://doi.org/10.1038/npp.2017.228

  51. Woolley, S.C., Dopaminergic regulation of vocal-motor plasticity and performance, Curr. Opin. Neurobiol., 2019, vol. 54, pp. 127–133. https://doi.org/10.1016/j.conb.2018.10.008

  52. Xiao, L., Chattree, G., Oscos, F.G., et al., A basal ganglia circuit sufficient to guide birdsong learning, Neuron, 2018, vol. 98, no. 1, pp. 208–221, article ID e5. https://doi.org/10.1016/j.neuron.2018.02.020

  53. Yanagihara, S., Ikebuchi, M., Mori, C., et al., Neural correlates of vocal initiation in the VTA/SNc of juvenile male zebra finches, Sci. Rep., vol. 11, no. 1, article ID 22388. https://doi.org/10.1038/s41598-021-01955-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Ivlieva.

Ethics declarations

The author declares she has no conflicts of interest.

This article does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivlieva, N.Y. The Role of the Basal Ganglia in the Development and Organization of Vocal Behavior in Songbirds. Russ J Dev Biol 53, 231–238 (2022). https://doi.org/10.1134/S106236042204004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236042204004X

Keywords:

Navigation