Skip to main content
Log in

Genetic Regulation of Morphogenesis of Drosophila melanogaster Mechanoreceptors

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Drosophila mechanoreceptors (bristles), represented by macro- and microchetae, are located on the insect body in an orderly manner and are the result of a deterministic conversion of ectodermal cells of imaginal discs into progenitor neural cells with the following differentiation of derivatives of these cells into components of the mechanoreceptor, which consists of two surface cuticle structures, a bristle with a socket and two underlying neural components: neuron and a glial cell. The morphogenesis of mechanoreceptors occurs through three successive stages: (1) segregation from the mass of ectodermal cells of domains that are potentially competent to the neural pathway of development (proneural clusters (PC)); (2) separation of the parental cell of mechanoreceptor (PCM) in the proneural cluster, and (3) three asymmetric divisions of PCM and its descendant cells with the specialization of daughter cells of the last generation into components of a definitive sensory organ. The formation of the bristle pattern is ordered in space and time. The spatial determination is due to the positioning of the parental cells, and the temporal determination is associated with two synchronization events: the completion of separation of PCM for all mechanoreceptors by the first to tenth hour after the formation of the puparium and the time limit for their entry into the first asymmetric mitosis. Our reconstruction and analysis of the molecular genetic system that provides the listed events of morphogenesis of a single mechanoreceptor (and the bristle pattern as a whole) revealed its hierarchical organization. The elements of the system are grouped into three modules corresponding to the stages of morphogenesis of the sensory organ: the gene networks “Neurogenesis: prepattern,” “Neurogenesis: determination,” and “Neurogenesis: asymmetric division.” The functioning of the system consistently limits the number of cells that are competent for neural development, firstly to dozens at the level of clusters, and then to a single parental cell within the cluster. The main attribute and connecting link of networks is the complex of proneural achaete-scute (AS-C) genes, the functioning of which at the stage of the separation of PCM is controlled by the central regulatory circuit (CRC). The analysis of the functioning of CRC revealed two phases of its activity that are differing in the time of action and the composition of elements. The cardinal difference of the second phase is the change in the content of the Phyl protein, which is responsible for the degradation of the proneural ASC proteins. This review briefly describes the main stages of mechanoreceptor morphogenesis, the composition and interrelationships of the gene networks supporting them, and also considers the inter- and intracellular mechanisms of PCM segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abuhashem, A., Garg, V., and Hadjantonakis, A.K., RNA polymerase II pausing in development: orchestrating transcription, Open Biol., 2022, vol. 12, no. 1, pp. 210–220. https://doi.org/10.1098/rsob.210220

  2. del Álamo, D., Rouault, H., and Schweisguth, F., Mechanism and significance of cis-inhibition in Notch signalling, Curr. Biol., 2011, vol. 21, no. 1, pp. R40–R47. https://doi.org/10.1016/j.cub.2010.10.034

  3. Ananko, E.A., Kolpakov, F.A., and Kolchanov, N.A., GeneNet database: a technology for a formalized description of gene networks, Proc. Second Int. Conf. on Bioinformatics of Genome Regulation and Structure. BGRS’, 2000, pp. 174–177.

  4. Ayeni, J.O., Audibert, A., Fichelson, P., et al., G2 phase arrest prevents bristle progenitor self-renewal and synchronizes cell division with cell fate differentiation, Development, 2016, vol. 143, no. 7, pp. 1160–1169. https://doi.org/10.1242/dev.134270

  5. Barad, O., Hornstein, E., and Barkai, N., Robust selection of sensory organ precursors by the Notch-Delta pathway, Curr. Opin. Cell Biol., 2011, vol. 23, no. 6, pp. 663–667. https://doi.org/10.1016/j.ceb.2011.09.005

  6. Bardin, A.J., Le Borgne, R., and Schweisguth, F., Asymmetric localization and function of cell-fate determinants: a fly’s view, Curr. Opin. Neurobiol., 2004, vol. 1, no. 1, pp. 6–14. https://doi.org/10.1016/j.conb.2003.12.002

  7. Becam, I., Fiuza, U.M., Arias, A.M., and Milán, M., A role of receptor Notch in ligand cis-inhibition in Drosophila, Curr. Biol., 2010, vol. 20, no. 6, pp. 554–560. https://doi.org/10.1016/j.cub.2010.01.058

  8. Bocci, F., Onuchic, J.N., and Jolly, M.K., Understanding the principles of pattern formation driven by Notch signaling by integrating experiments and theoretical models, Front. Physiol., 2020, vol. 11, p. 929. https://doi.org/10.3389/fphys.2020.00929

  9. Le Borgne, R., Bardin, A., and Schweisguth, F., The roles of receptor and ligand endocytosis in regulating Notch signaling, Development, 2005, vol. 132, pp. 1751–1762.

    Article  CAS  Google Scholar 

  10. Buffin, E. and Gho, M., Laser microdissection of sensory organ precursor cells of Drosophila microchaetes, PLoS One, 2010, vol. 5, no. 2, article ID e9285. https://doi.org/10.1371/journal.pone.0009285

  11. Bukharina, T.A. and Furman, D.P., Genetic control of mechanoreceptor development in Drosophila melanogaster—description in the NEUROGENESIS database, Inf. Vestn. VOGiS, 2009, vol. 13, no. 1, pp. 186–193.

  12. Bukharina, T.A. and Furman, D.P., The mechanisms determining bristle pattern in Drosophila melanogaster, Russ. J. Dev. Biol., 2015, vol. 4, no. 3, pp. 99–110. https://doi.org/10.1134/S1062360415030029

  13. Bukharina, T.A., Golubyatnikov, V.P., Golubyatnikov, I.V., and Furman, D.P., Model investigation of central regulatory contour of gene net of D. melanogaster macrochaete morphogenesis, Russ. J. Dev. Biol., 2012, vol. 43, no. 1, pp. 49–53. https://doi.org/10.1134/S106236041201002X

  14. Bukharina, T.A., Golubyatnikov, V.P., and Furman, D.P., Gene network controlling the morphogenesis of D. melanogaster macrochaetes: an expanded model of the central regulatory circuit, Russ. J. Dev. Biol., 2016, vol. 47, no. 5, pp. 288–293. https://doi.org/10.1134/S1062360416050040

  15. Bukharina, T.A., Akinshin, A.A., Golubyatnikov, V.P., and Furman, D.P., Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila, J. Appl. Ind. Math., 2020, vol. 14, no. 2, pp. 249–255. https://doi.org/10.1134/S1990478920020040

  16. Calleja, M., Renaud, O., Usui, K., et al., How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila, Gene, 2002, vol. 292, nos. 1–2, pp. 1–12. https://doi.org/10.1016/s0378-1119(02)00628-5

  17. Chang, C.W., Pi, H., Chien, C.T., and Hsu, C.P., Network modeling of Drosophila external sensory organ precursor formation: the role of recently studied genes, J. Genet. Mol. Biol., 2003, vol. 14, no. 4, pp. 243–251.

    Google Scholar 

  18. Chang, P.J., Hsiao, Y.L., Tien, A.C., et al., Negative-feedback regulation of proneural proteins controls the timing of neural precursor division, Development, 2008, vol. 135, no. 18, pp. 3021–3030. https://doi.org/10.1242/dev.021923

  19. Corson, F., Couturier, L., Rouault, H., et al., Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila, Science, 2017, vol. 356, no. 6337, p. 501. https://doi.org/10.1126/science.aai7407

  20. Couturier, L., Mazouni, K., and Schweisguth, F., Inhibition of Notch recycling by Numb: relevance and mechanism(s), Cell Cycle, 2013, vol. 12, no. 11, pp. 1647–1648. https://doi.org/10.4161/cc.24983

  21. Couturier, L., Mazouni, K., Corson, F., and Schweisguth, F., Regulation of Notch output dynamics via specific E(spl)-HLH factors during bristle patterning in Drosophila, Nat. Commun., 2019, vol. 10, no. 1, p. 3486. https://doi.org/10.1038/s41467-019-11477-2

  22. Crews, S.T. and Pearson, J.C., Transcriptional autoregulation in development, Curr. Biol., 2009, vol. 19, no. 6, pp. R241–R246. https://doi.org/10.1016/j.cub.2009.01.015

  23. Cubas, P., de Celis, J.F., Campuzano, S., and Modolell, J., Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc, Genes Dev., 1991, vol. 5, no. 6, pp. 996–1008. https://doi.org/10.1101/gad.5.6.996

  24. Culi, J. and Modolell, J., Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling, Genes Dev., 1998, vol. 12, no. 13, pp. 2036–2047. https://doi.org/10.1101/gad.12.13.2036

  25. Culi, J., Martín-Blanco, E., and Modolell, J., The EGF receptor and N signalling pathways act antagonistically in Drosophila mesothorax bristle patterning, Development, 2001, vol. 128, no. 2, pp. 299–308.

    Article  CAS  Google Scholar 

  26. Fichelson, P., Audibert, A., Simon, F., and Gho, M., Cell cycle and cell-fate determination in Drosophila neural cell lineages, Trends Genet., 2005, vol. 21, no. 7, pp. 413–420. https://doi.org/10.1016/j.tig.2005.05.010

  27. Fiuza, U.-M., Klein, T., Arias, A.M., and Hayward, P., Mechanisms of ligand-mediated inhibition in Notch signaling activity in Drosophila, Dev. Dyn., 2010, vol. 239, no. 3, pp. 798–805. https://doi.org/10.1002/dvdy.22207

  28. Formosa-Jordan, P. and Ibañes, M., Competition in Notch signaling with cis enriches cell fate decisions, PLoS One, 2014, vol. 9, no. 4, article ID e95744. https://doi.org/10.1371/journal.pone.0095744

  29. Furman, D.P. and Bukharina, T.A., Genetic control of macrochaetae development in Drosophila melanogaster, Russ. J. Dev. Biol., 2008a, vol. 39, no. 4, pp. 195–206. https://doi.org/10.1134/S1062360408040012

  30. Furman, D.P. and Bukharina, T.A., How Drosophila melanogaster forms its mechanoreceptors, Curr. Genomics, 2008b, vol. 9, no. 5, pp. 312–323. https://doi.org/10.2174/138920208785133271

  31. Furman, D.P. and Bukharina, T.A., The gene network determining development of Drosophila melanogaster mechanoreceptors, Comp. Biol. Chem., 2009, vol. 33, pp. 231–234. https://doi.org/10.1016/j.compbiolchem. 2009.04.001

  32. Furman, D.P. and Bukharina, T.A., Drosophila mechanoreceptors as a model for studying asymmetric cell division, Int. J. Dev. Biol., 2011, vol. 55, no. 2, pp. 133–141. https://doi.org/10.1387/ijdb.103129df

  33. Furman, D.P. and Bukharina, T.A., Morphogenesis of Drosophila melanogaster macrochaetes: cell fate determination for bristle organ, J. Stem Cells, 2012, vol. 7, no. 1, pp. 19–41.

    CAS  PubMed  Google Scholar 

  34. Furman, D.P. and Bukharina, T.A., Analysis of the NEUROGENESIS: PREPATTERN gene network, which controls the first stage of the formation of the bristle pattern in Drosophila melanogaster, Vavilov. Zh. Genet. Sel., 2016, vol. 20, no. 6, pp. 832–839.https://doi.org/10.18699/VJ16.199

    Article  Google Scholar 

  35. Furman, D.P. and Bukharina, T.A., The development of bristle pattern in Drosophila melanogaster: prepattern and achaete-scute genes, Vavilov J. Genet. Breed., 2018, vol. 22, no. 8, pp. 1046–1054. https://doi.org/10.18699/VJ18.449

  36. Gaertner, B. and Zeitlinger, J., RNA polymerase II pausing during development, Development, 2014, vol. 141, no. 6, pp. 1179–1183. https://doi.org/10.1242/dev.088492

  37. García-Bellido, A. and de Celis, J.F., The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development, Genetics, 2009, vol. 182, no. 3, pp. 631–639. https://doi.org/10.1534/genetics.109.104083

  38. Ghysen, A. and Dambly-Chaudiere, C., Genesis of the Drosophila peripheral nervous system, Trends Genet., 1989, vol. 5, pp. 251–255.

    Article  CAS  Google Scholar 

  39. Giebel, B. and Wodarz, A., Notch signaling: numb makes the difference, Curr. Biol., 2012, vol. 22, no. 4, pp. R133–R135. https://doi.org/10.1016/j.cub.2012.01.006

  40. Golubyatnikov, V.P., Kazantsev, M.V., Kirillova, N.E., et al., Mathematical and numerical models of two asymmetric gene networks, Sib. Electron. Math. Rep., 2018, vol. 15, pp. 1271–1283. https://doi.org/10.17377/semi.2018.15.103

  41. Gomez-Skarmeta, J.L., Campuzano, S., and Modolell, J., Half a century of neural prepatterning: the story of a few bristles and many genes, Nat. Rev. Neurosci., 2003, vol. 4, no. 3, pp. 587–598. https://doi.org/10.1038/nrn1142

  42. Hartenstein, V., Development of insect sensilla, in Comprehensive Molecular Insect Science, Gilbert, L.I., Ed., Amsterdam: Elsevier, 2005, vol. 1, pp. 379–419. https://doi.org/10.1016/b0-44-451924-6/00012-0

  43. Hartenstein, V. and Posakony, J.W., Development of adult sensilla on the wing and notum of Drosophila melanogaster, Development, 1989, vol. 107, no. 2, pp. 389–405.

    Article  CAS  Google Scholar 

  44. Heitzler, P., Bourouis, M., Ruel, L., et al., Genes of the enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila, Development, 1996, vol. 122, no. 1, pp. 161–171.

    Article  CAS  Google Scholar 

  45. Henrich, V.C., Livingston, L., and Gilbert, L.I., Developmental requirements for the ecdysoneless (ecd) locus in Drosophila melanogaster, Dev. Genet., 1993, vol. 14, no. 5, pp. 369–377. https://doi.org/10.1002/dvg.10201405068293578

  46. Henrique, D. and Schweisguth, F., Mechanisms of Notch signaling: a simple logic deployed in time and space, Development, 2019, vol. 146, no. 3, article ID dev172148. https://doi.org/10.1242/dev.172148

  47. Huang, F., Dambly-Chaudiere, C., and Ghysen, A., The emergence of sense organs in the wing disc of Drosophila, Development, 1991, vol. 111, pp. 1087–1095.

    Article  CAS  Google Scholar 

  48. Johnson, S.A., Zitserman, D., and Roegiers, F., Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells, Mol. Biol. Cell, 2016, vol. 27, no. 18, pp. 2857–2866. https://doi.org/10.1091/mbc.E15-11-0751

  49. Kimura, K., Usui-Ishihara, A., and Usui, K., G2 arrest of cell cycle ensures a determination process of sensory mother cell formation in Drosophila, Dev. Genes Evol., 1997, vol. 207, no. 3, pp. 199–202. https://doi.org/10.1007/s004270050108

  50. Kunisch, M., Haenlin, M., and Campos-Ortega, J.A., Lateral inhibition mediated by the Drosophila neurogenic gene delta is enhanced by proneural proteins, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 21, pp. 10139–10143. https://doi.org/10.1073/pnas.91.21.10139

  51. Lagha, M., Bothma, J.P., Esposito, E., et al., Paused POL II coordinates tissue morphogenesis in the Drosophila embryo, Cell, 2013, vol. 15, no. 5, pp. 976–987. https://doi.org/10.1016/j.cell.2013.04.045

  52. Lai, E.C. and Orgogozo, V.A., Hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity, Dev. Biol., 2004, vol. 269, no. 1, pp. 1–17. https://doi.org/10.1016/j.ydbio.2004.01.032

  53. Lai, E.C., Deblandre, G.A., Kintner, C., and Rubin, G.M., Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of Delta, Dev. Cell, 2001, vol. 1, no. 6, pp. 783–794.

    Article  CAS  Google Scholar 

  54. Li, S., Xu, C., and Carthew, R.W., Phyllopod acts as an adaptor protein to link the Sina ubiquitin ligase to the substrate protein tramtrack, Mol. Cell Biol., 2002, vol. 22, no. 19, pp. 6854–6865. https://doi.org/10.1128/MCB.22.19.6854-6865.2002

  55. Martinez, C. and Modolell, J., Cross-regulatory interactions between the proneural achaete and scute genes of Drosophila, Science, 1991, vol. 251, no. 5000, pp. 1485–1487. https://doi.org/10.1126/science.1900954

  56. Meserve, J.H. and Duronio, R.J., A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye, Dev. Biol., 2017, vol. 430, no. 2, pp. 374–384. https://doi.org/10.1016/j.ydbio.2017.06.023

  57. Miller, S.W. and Posakony, J.W., Lateral inhibition: two modes of non-autonomous negative autoregulation by Neuralized, PLoS Genet., 2018, vol. 14, no. 7, article ID e1007528. https://doi.org/10.1371/journal.pgen.1007528

  58. Miller, S.W., Rebeiz, M., Atanasov, J.E., and Posakony, J.W., Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 48, pp. 17194–17199. https://doi.org/10.1073/pnas.1415308111

  59. Nègre, N., Ghysen, A., and Martinez, A.-M., Mitotic G2-arrest is required for neural cell fate determination in Drosophila, Mech. Dev., 2003, vol. 120, no. 2, pp. 253–265. https://doi.org/10.1016/S0925-4773(02)00419-7

  60. Pi, H. and Chien, C.T., Getting the edge: neural precursor selection, J. Biomed. Sci., 2007, vol. 14, no. 4, pp. 467–473. https://doi.org/10.1007/s11373-007-9156-4

  61. Pi, H., Wu, H.J., and Chien, C.T., A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny, Development, 2001, vol. 28, no. 14, pp. 2699–2710.

    Article  Google Scholar 

  62. Pi, H., Huang, S.K., Tang, C.Y., Sun, Y.H., and Chien, C.T., Phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 22, pp. 8378–8383. https://doi.org/10.1073/pnas.0306010101

  63. Reeves, N. and Posakony, J.W., Genetic programs activated by proneural proteins in the developing Drosophila PNS, Dev. Cell, 2005, vol. 8, no. 3, pp. 413–425.

    Article  CAS  Google Scholar 

  64. Renaud, O. and Simpson, P., Movement of bristle precursors contributes to the spacing pattern in Drosophila, Mech. Dev., 2002, vol. 119, no. 2, pp. 201–211. https://doi.org/10.1016/s0925-4773(02)00381-7

  65. Roegiers, F. and Jan, Y.N., Asymmetric cell division, Curr. Opin. Cell. Biol., 2004, vol. 16, no. 2, pp. 195–205. https://doi.org/10.1016/j.ceb.2004.02.010

  66. Roegiers, F., Younger-Shepherd, S., Jan, L.Y., and Jan, Y.N., Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage, Nat. Cell Biol., 2001, vol. 3, no. 1, pp. 58–67. https://doi.org/10.1038/35050568

  67. Saunders, A., Core, L.J., Sutcliffe, C., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription, Genes Dev., 2013, vol. 27, no. 10, pp. 1146–1158. https://doi.org/10.1101/gad.215459.113

  68. Schweisguth, F., Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision, Dev. Biol., 2015, vol. 4, no. 3, pp. 299–309. https://doi.org/10.1002/wdev.175

  69. Shilo, B.Z., Phyllopod at the intersection of developmental signalling pathways, EMBO J., 2009, vol. 28, no. 4, pp. 311–312. https://doi.org/10.1038/emboj.2008.291

  70. Simpson, P., Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila, Development, 1990, vol. 109, no. 3, pp. 509–519.

    Article  CAS  Google Scholar 

  71. Simpson, P., A prepattern for sensory organs. Drosophila development, Curr. Biol., 1996, no. 6, pp. 948–950.

  72. Simpson, P., Woehl, R., and Usui, K., Development and evolution of bristle patterns in Diptera, Development, 1999, vol. 126, no. 7, pp. 1349–1364.

    Article  CAS  Google Scholar 

  73. Skeath, J.B. and Carroll, S.B., Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing, Genes Dev., 1991, vol. 5, no. 6, pp. 984–995. https://doi.org/10.1101/gad.5.6.984

  74. Sliter, T.J., Imaginal disc-autonomous expression of a defect in sensory bristle patterning caused by the lethal(3)ecdysoneless1 (1(3)ecd1) mutation of Drosophila melanogaster, Development, 1989, vol. 106, no. 2, pp. 347–354.

    Article  CAS  Google Scholar 

  75. Stern, C., Two or three bristles, Am. Sci., 1954, vol. 42, pp. 213–247.

    Google Scholar 

  76. Troost, T., Schneider, M., and Klein, T., A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster, PLoS Genet., 2015, vol. 11, no. 1, article ID e1004911. https://doi.org/10.1371/journal.pgen.1004911

  77. Usui, K. and Kimura, K.I., Sensory mother cells are singled out from among mitotically quiescent clusters of cells in the wing disc of Drosophila, Development, 1992, vol. 116, no. 3, pp. 601–610.

    Article  Google Scholar 

  78. Usui, K. and Kimura, K.I., Sequential emergence of the evenly spaced microchaetes on the notum of Drosophila, Roux’s Arch. Dev. Biol., 1993, vol. 203, no. 3, pp. 151–158. https://doi.org/10.1007/BF00365054

  79. Usui-Ishihara, A. and Simpson, P., Differences in sensory projections between macro- and microchaetes in drosophilid flies, Dev. Biol., 2005, vol. 277, no. 1, pp. 170–183. https://doi.org/10.1016/j.ydbio.2004.09.017

  80. Usui, K., Goldstone, C., Gibert, J.M., et al., Redundant mechanisms mediate bristle patterning on the Drosophila thorax, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 51, pp. 20112–20117. https://doi.org/10.1073/pnas.0804282105

  81. Watts, J.A., Burdick, J., Daigneault, J., et al., Cis elements that mediate RNA polymerase II pausing regulate human gene expression, Am. J. Hum. Genet., 2019, vol. 105, no. 4, pp. 677–688. https://doi.org/10.1016/j.ajhg.2019.08.003

  82. Weinmaster, G. and Fischer, J.A., Notch ligand ubiquitylation: what is it good for?, Dev. Cell, 2011, vol. 21, no. 1, pp. 134–144. https://doi.org/10.1016/j.devcel.2011.06.006

  83. Yasugi, T. and Sato, M., Mathematical modeling of Notch dynamics in Drosophila neural development, Fly (Austin), 2022, vol. 16, no. 1, pp. 24–36. https://doi.org/10.1080/19336934.2021.1953363

  84. zur Lage P. and Jarman, A.P., Antagonism of EGFR and Notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors, Development, 1999, vol. 126, no. 14, pp. 3149–3157. https://doi.org/10.1242/dev.126.14.3149

Download references

Funding

The work was carried out within the framework of the budgetary project no. FWNR-2022-0020 “Systems Biology and Bioinformatics: Reconstruction, Analysis, and Modeling of the Structural and Functional Organization and Evolution of Human, Animal, Plant, and Microbial Gene Networks.”

Author information

Authors and Affiliations

Authors

Contributions

The authors made equal contributions to the preparation of the article.

Corresponding authors

Correspondence to D. P. Furman or T. A. Bukharina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furman, D.P., Bukharina, T.A. Genetic Regulation of Morphogenesis of Drosophila melanogaster Mechanoreceptors. Russ J Dev Biol 53, 239–251 (2022). https://doi.org/10.1134/S1062360422040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422040038

Keywords:

Navigation