Skip to main content

Advertisement

Log in

The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina

  • DEVELOPMENTAL BIOLOGY OF ANIMALS (INVERTEBRATES AND VERTEBRATES)
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The purinergic signaling system (PSS) occupies an exceptional position in the regulation of cellular processes, maintaining the homeostasis of the retina of vertebrates. In addition to general regularities, taxon-specific differences, genetically and metabolically determined, are manifested in the functioning of PSS in the retina. Signal cascades with the participation of PSS components can perform a dual role in the retina: they have both a damaging and protective effect, which is largely determined by the conditions of the cellular microenvironment and the molecular context. The identification of key components in the functioning of the PSS, linking it with other endogenous regulatory systems, creates prerequisites for the selection of cellular and molecular targets for neuroprotection in human retinal pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Abbracchio, M.P., Burnstock, G., Verkhratsky, A., et al., Purinergic signaling in the nervous system: a noverview, Trends Neurosci., 2009, vol. 32, no. 1, pp. 19–29.

    CAS  PubMed  Google Scholar 

  2. Ahn, J. and Molday, R.S., Purification and characterization of ABCR from bovine rod outer segments, Methods Enzymol., 2000, vol. 315, pp. 864–879.

    CAS  PubMed  Google Scholar 

  3. Akanuma, S., Soutome, T., Hisada, E., et al., Na+-independent nucleoside transporters regulate adenosine and hypoxanthine levels in Müller cells and the inner blood-retinal barrier, Invest. Ophthalmol. Vis. Sci., 2013, vol. 54, no. 2, pp. 1469–1477.

    PubMed  Google Scholar 

  4. De Almeida-Pereira, L., Repossi, M.G., Magalhaes, C.F., et al., P2Y12 but not P2Y13 purinergic receptor controls postnatal rat retinogenesis in vivo, Mol. Neurobiol., 2018, vol. 55, no. 11, pp. 8612–8624.

    CAS  PubMed  Google Scholar 

  5. Alvarado-Castillo, C., Harden, T.K., and Boyer, J.L., Regulation of P2Y1 receptor-mediated signaling by the ectonucleosidetriphosphate diphosphohydrolase isozymes NTPDase1 and NTPDase2, Mol. Pharmacol., 2005, vol. 67, no. 1, pp. 114–122.

    CAS  PubMed  Google Scholar 

  6. Alvarez-Hernan, G., de Mera-Rodriguez, J.A., Ganan, Y., et al., Development and postnatal neurogenesis in the retina: a comparison between altricial and precocial bird species, Neural Regen. Res., 2021, vol. 16, no. 1, pp. 16–20. https://doi.org/10.4103/1673-5374.286947

    Article  PubMed  Google Scholar 

  7. Andrejew, R., Oliveira-Giacomelli, A., Ribeiro, D.E., et al., The P2X7 receptor: central hub of brain diseases, Front. Mol. Neurosci., 2020, vol. 13, art. 124.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arredouani, A., Yu, F., Sun, L., et al., Regulation of store-operated Ca2+ entry during the cell cycle, J. Cell Sci., 2010, vol. 123, no. 13, pp. 2155–2162.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Attwell, D., Barbour, B., and Szatkowski, M., Nonvesicular release of neurotransmitter, Neuron, 1993, vol. 11, no. 3, pp. 401–407.

    CAS  PubMed  Google Scholar 

  10. Battista, A.G., Ricatti, M.J., Pafundo, D.E., et al., Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina, J. Neurochem., 2009, vol. 111, no. 2, pp. 600–613.

    CAS  PubMed  Google Scholar 

  11. Beckel, J.M., Lu, W., Civan, M.M., et al., Treatment of retinal disorders with purinergic drugs: beyond receptors, J. Ocul. Pharmacol. Ther., 2016, vol. 32, pp. 488–489.

    CAS  PubMed  Google Scholar 

  12. Bennett, M.V., Garre, J.M., Orellana, J.A., et al., Connexin and pannexin hemichannels in inflammatory responses of glia and neurons, Brain Res., 2012, vol. 1487, pp. 3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennis, A., Gorgels, T.G.M.F., Brink, J.B., et al., Comparison of mouse and human retinal pigment epithelium gene expression profiles: potential implications for age-related macular degeneration, PLoS One, 2015, vol. 10, e0141597.

    PubMed  PubMed Central  Google Scholar 

  14. Bhutto, I.A., Baba, T., Merges, C., et al., Low nitric oxide synthases (NOS) in eyes with age-related macular degeneration (AMD), Exp. Eye Res., 2010, vol. 90, no. 1, pp. 155–167.

    CAS  PubMed  Google Scholar 

  15. Bjelobaba, I., Janjic, M.M., and Stojilkovic, S.S., Purinergic signaling pathways in endocrine system, Auton. Neurosci., 2015, vol. 191, pp. 102–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boia, R., Ruzafa, N., AiRes., I.D., et al., Neuroprotective strategies for retinal ganglion cell degeneration: current status and challenges ahead, Int. J. Mol. Sci., 2020, vol. 21, no. 7, аrticle no. 2262.

  17. Brass, D., Grably, M.R., Bronstein-Sitton, N., et al., Using antibodies against P2Y and P2X receptors in purinergic signaling research, Purinergic Signal., 2012, vol. 8, Suppl. 1, pp. 61–79.

  18. Bringmann, A., Iandiev, I., Pannicke, T., et al., Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects, Prog. Ret. Eye Res., 2009, vol. 28, no. 6, pp. 423–451.

    CAS  Google Scholar 

  19. Browne, A.W., Arnesano, C., Harutyunyan, N., et al., Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging, Invest. Ophthalmol. Vis. Sci., 2017, vol. 58, no. 9, pp. 3311–3318.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burnstock, G., Purinergic signalling in endocrine organs, Purinergic Signal., 2014, vol. 10, pp. 189–231.

    CAS  PubMed  Google Scholar 

  21. Burnstock, G., Shortand long-term (trophic) purinergic signaling, Philos. Trans. R. Soc., B, 2016, vol. 371, art. 20150422.

  22. Burnstock, G. and Knight, G.E., Cellular distribution and functions of p2 receptor subtypes in different systems, Int. Rev. Cytol., 2004, vol. 240, pp. 31–304.

    CAS  PubMed  Google Scholar 

  23. Burnstock, G. and Ulrich, H., Purinergic signalling in embryonic and stem cell development, Cell Mol. Life Sci., 2011, vol. 68, no. 8, pp. 1369–1394.

    CAS  PubMed  Google Scholar 

  24. Capowski, E.E., Samimi, K., Mayer, S.J., et al., Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines, Development, 2019, vol. 146, no. 1, art. dev171686.

    PubMed  PubMed Central  Google Scholar 

  25. Carneiro, A.C.D., Fragel-Madeira, L., Silva-Neto, M.A., et al., A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells, Dev. Neurobiol., 2008, vol. 68, no. 5, pp. 620–631.

    PubMed  Google Scholar 

  26. Casco-Robles, M.M., Islam, M.R., Inami, W., et al., Turning the fate of reprogramming cells from retinal disorder to regeneration by pax6 in newts, Sci. Rep., 2016, vol. 6, art. 33761.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Caseley, E.A., Muench, S.P., Roger, S., et al., Non-synonymous single nucleotide polymorphisms in the P2X receptor genes: association with diseases, impact on receptor functions and potential use as diagnosis biomarkers, Int. J. Mol. Sci., 2014, vol. 15, pp. 13344–13371.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cowlen, M.S., Zhang, V.Z., Warnock, L., et al., Localization of ocular P2Y2 receptor gene expression by in situ hybridization, Exp. Eye Res., 2003, vol. 77, pp. 77–84.

    CAS  PubMed  Google Scholar 

  29. Cunha-Vaz, J., Bernardes, R., and Lobo, C., Blood–retinal barrier, Eur. J. Ophthalmol., 2011, vol. 21, suppl. 6, pp. 3–9.

    Google Scholar 

  30. Cvekl, A. and Mitton, K.P., Epigenetic regulatory mechanisms in vertebrate eye development and disease, Heredity (Edinb.), 2010, vol. 105, no. 1, pp. 135–151.

    CAS  Google Scholar 

  31. Dale, N., Dynamic ATP signalling and neural development, J. Physiol., 2008, vol. 586, no. 10, pp. 2429–2436.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Domercq, M., Perez-Samartin, A., Aparicio, D., et al., P2X7 receptors mediate ischemic damage to oligodendrocytes, Glia, 2010, vol. 58, no. 6, pp. 730–740.

    PubMed  Google Scholar 

  33. Dopper, H., Menges, J., Bozet, M., et al., Differentiation protocol for 3D retinal organoids, immunostaining and signal quantitation, Curr. Protoc., 2020, vol. 55, no. 1, art. e120.

  34. Dyer, M.A. and Cepko, C.L., p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations, J. Neurosci., 2001, vol. 21, no. 12, pp. 4259–4271.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eltzschig, H.K., Sitkovsky, M.V., and Robson, S.C., Purinergic signaling during inflammation, N. Engl. J. Med., 2012, vol. 367, no. 24, pp. 2322–2333.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Erb, L. and Weisman, G.A., Coupling of P2Y receptors to G proteins and other signaling pathways, Wiley Interdiscip. Rev. Membr. Transp. Signal., 2012, vol. 1, no. 6, pp. 789–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferrari, D., Pizzirani, C., Adinolfi, E., et al., The P2X7 receptor: a key player in IL-1 processing and release, J. Immunol., 2006, vol. 176, no. 7, pp. 3877–3883.

  38. Ferrari, D., Bianchi, N., Eltzschig, H.K., et al., MicroRNAs modulate the purinergic signaling network, Trends Mol. Med., 2016, vol. 22, pp. 905–918.

    CAS  PubMed  Google Scholar 

  39. Fonseca, B., Martinez-Aguila, A., De Lara, M.J.P., et al., Diadenosine tetraphosphate as a potential therapeutic nucleotide to treat glaucoma, Purinergic Signal., 2017, vol. 13, pp. 171–177.

    CAS  PubMed  Google Scholar 

  40. Fowler, B.J., Gelfand, B.D., Kim, Y., et al., Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity, Science, 2014, vol. 346, pp. 1000–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Franca, G.R., Freitas, R.C., and Ventura, A.L., ATP-induced proliferation of developing retinal cells: regulation by factors released from postmitotic cells in culture, Int. J. Dev. Neurosci., 2007, vol. 25, no. 5, pp. 283–291.

    CAS  PubMed  Google Scholar 

  42. Franke, H., Klimke, K., Brinckmann, U., et al., P2X(7) receptor-mRNA and -protein in the mouse retina; changes during retinal degeneration in BALBCrds mice, Neurochem. Int., 2005, vol. 47, no. 4, pp. 235–242.

    CAS  PubMed  Google Scholar 

  43. Fries, J.E., Wheeler-Schilling, T.H., Guenther, E., et al., Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina, Invest. Ophthalmol. Vis. Sci., 2004a, vol. 45, no. 10, pp. 3410–3417.

    PubMed  Google Scholar 

  44. Fries, J.E., Wheeler-Schilling, T.H., Kohler, K., et al., Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study, Brain Res. Mol. Brain Res., 2004b, vol. 130, pp. 1–6.

    CAS  PubMed  Google Scholar 

  45. Gampe, K., Haverkamp, S., Robson, S.C., et al., NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation, Purinergic Signal., 2015, vol. 11, no. 1, pp. 155–160.

    CAS  PubMed  Google Scholar 

  46. Geiger, L.K., Kortuem, K.R., Alexejun, C., et al., Reduced redox state allows prolonged survival of axotomized neonatal retinal ganglion cells, Neuroscience, 2002, vol. 109, pp. 635–642.

    CAS  PubMed  Google Scholar 

  47. Ghosh, M., Aguirre, V., Wai, K., et al., The interplay between cyclic AMP, MAPK, and NF-κBP at ways in response to proinflammatory signals in microglia, Biomed. Res. Int., 2015, vol. 2015, art. 308461.

    PubMed  PubMed Central  Google Scholar 

  48. Giuliani, A.L., Sarti, A.C., and Di Virgilio, F., Extracellular nucleotides and nucleosides as signalling molecules, Immunol. Lett., 2019, vol. 205, pp. 16–24.

    CAS  PubMed  Google Scholar 

  49. Glaser, T., Cappellari, A.R., Pillat, M.M., et al., Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration, Purinergic Signal., 2012, vol. 8, pp. 523–553.

    CAS  PubMed  Google Scholar 

  50. Gonzalez-Fernandez, E., Sanchez-Gomez, M.V., Perez-Samartin, A., et al., A3 adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve, Glia, 2014, vol. 62, no. 2, pp. 199–216.

    PubMed  Google Scholar 

  51. Greenwood, D., Yao, W.P., and Housley, G.D., Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the retina, NeuroReport, 1997, vol. 8, pp. 1083–1088.

    CAS  PubMed  Google Scholar 

  52. Grigoryan, E.N., Novikova, Y.P., Gancharova, O.S., et al., New antioxidant SkQ1 is an effective protector of rat eye retinal pigment epithelium and choroid under conditions of long term organotypic cultivation, Adv. Aging Res., 2012, vol. 1, pp. 31–37.

    Google Scholar 

  53. Gu, X., Neric, N.J., Crabb, J.S., et al., Age-related changes in the retinal pigment epithelium (RPE), PLoS One, 2012, vol. 7, no. 6, art. e38673.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Guha, S., Baltazar, G.C., Coffey, E.E., et al., Lysosomal alkalinization, lipid oxidation, and reduced phagosome clearance triggered by activation of the P2X7 receptor, FASEB J., 2013, vol. 27, pp. 4500–4509.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guzman-Aranguez, A., Gasull, X., Diebold, Y., et al., Purinergic receptors in ocular inflammation, Mediators Inflamm., 2014, vol. 2014, аrticle 320906.

  56. Heavner, W. and Pevny, L., Eye development and retinogenesis, Cold Spring Harb. Perspect. Biol., 2012, vol. 4, art. a008391.

    PubMed  PubMed Central  Google Scholar 

  57. Ho, T., Aplin, F.P., Jobling, A.I., et al., Localization and possible function of P2X receptors in normal and diseased retinae, J. Ocul. Pharmacol. Ther., 2016, vol. 32, pp. 509–517.

    CAS  PubMed  Google Scholar 

  58. Hoon, M., Okawa, H., Santina, L.D., et al., Functional architecture of the retina: development and disease, Prog. Retin. Eye Res., 2014, vol. 42, pp. 44–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu, H., Lu, W., Zhang, M., et al., Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo, Exp. Eye Res., 2010, vol. 91, pp. 425–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu, S.J., Calippe, B., Lavalette, S., et al., Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1β secretion and photoreceptor neurodegeneration, J. Neurosci., 2015, vol. 35, pp. 6987–6996.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Illes, P. and Rubini, P., Regulation of neural stem/progenitor cell functions by P2X and P2Y receptors, Neural Regen. Res., 2017, vol. 12, pp. 395–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jabs, R., Guentherb, E., Marquordt, K., et al., Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Müller cells of the rat retina, Mol. Brain Res., 2000, vol. 76, pp. 205–210.

    CAS  PubMed  Google Scholar 

  63. Jacobson, K.A. and Müller, C.E., Medicinal chemistry of adenosine, P2Y and P2X receptors, Neuropharmacology, 2016, vol. 104, pp. 31–49.

    CAS  PubMed  Google Scholar 

  64. Jung, J., Joh, W., Kwon, H., and Jeong, N.Y., ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury, Biomed. Res. Int., 2014, vol. 2014, art. 936891.

    PubMed  PubMed Central  Google Scholar 

  65. Kaneda, M., Ishii, K., Morishima, Y., et al., OFF-cholinergic-pathway-selective localization of P2X2 purinoceptors in the mouse retina, J. Comp. Neurol., 2004, vol. 476, no. 1, pp. 103–111.

    CAS  PubMed  Google Scholar 

  66. Kaneda, M., Ishii, T., and Hosoya, T., Pathway-dependent modulation by P2-purinoceptors in the mouse retina, Eur. J. Neurosci., 2008, vol. 28, pp. 128–136.

    PubMed  Google Scholar 

  67. Kim, W.S., Weickert, C.S., and Garner, B., Role of ATP-binding cassette transporters in brain lipid transport and neurological disease, J. Neurochem., 2008, vol. 104, pp. 1145–1166.

    CAS  PubMed  Google Scholar 

  68. Kimura, A., Namekata, K., Guo, X., et al., Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration, Int. J. Mol. Sci., 2016, vol. 17, no. 9, art. 1584.

    PubMed Central  Google Scholar 

  69. King, A.E., Ackley, M.A., Cass, C.E., et al., Nucleoside transporters: from scavengers to novel therapeutic targets, Trends Pharm. Sci., 2006, vol. 27, pp. 416–425.

    CAS  PubMed  Google Scholar 

  70. Kubo, Y., Akanuma, S., and Hosoya, K., Recent advances in drug and nutrient transport across the blood-retinal barrier, Expert. Opin. Drug Metab. Toxicol., 2018, vol. 14, no. 5, pp. 513–531.

    CAS  PubMed  Google Scholar 

  71. Kur, J. and Newman, E.A., Purinergic control of vascular tone in the retina, J. Physiol., 2013, vol. 592, no. 3, pp. 491–504.

    PubMed  Google Scholar 

  72. Lazarowski, E.R., Sesma, J.I., Seminario-Vidal, L., et al., Molecular mechanisms of purine and pyrimidine nucleotide release, Adv. Pharmacol., 2011, vol. 61, pp. 221–261.

    CAS  PubMed  Google Scholar 

  73. Li, F., Jiang, D., and Samuel, M.A., Microglia in the developing retina, Neural Dev., vol. 2019, no. 14, p. 12.

  74. Lin, J.H., Takano, T., Arcuino, G., et al., Purinergic signaling regulates neural progenitor cell expansion and neurogenesis, Dev. Biol., 2006, vol. 302, no. 1, pp. 356–366.

    PubMed  PubMed Central  Google Scholar 

  75. Linden, R., Martins, R., and Silveira, M.S., Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina, Prog. Ret. Eye Res., 2005, vol. 24, no. 4, pp. 457–491.

    CAS  Google Scholar 

  76. Liu, L. and Liu, X., Roles of drug transporters in blood-retinal barrier, Adv. Exp. Med. Biol., 2019, vol. 1141, pp. 467–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, X.L., Zhou, R., Pan, Q.-Q., et al., Genetic inactivation of the adenosine A2A receptor attenuates pathologic but not developmental angiogenesis in the mouse retina, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 12, pp. 6625–6632.

    PubMed  PubMed Central  Google Scholar 

  78. Liu, Y., Wang, C., and Su, G., Cellular signaling in Müller glia: progenitor cells for regenerative and neuroprotective responses in pharmacological models of retinal degeneration, J. Ophthalmol., 2019, vol. 2019, аrticle 5743109.

  79. Locher, K.P., Mechanistic diversity in ATP-binding cassette (ABC) transporters, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 6, pp. 487–493.

    CAS  PubMed  Google Scholar 

  80. Lu, W., Hu, H., Sevigny, J., et al., Rat, mouse, and primate models of chronic glaucoma show sustained elevation of extracellular ATP and altered purinergic signaling in the posterior eye, Invest. Ophthalmol. Vis. Sci., 2015, vol. 56, pp. 3075–3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. MacNair, C.E., Schlamp, C.L., Montgomery, A.D., et al., Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways, J. Neuroinflamm., 2016, vol. 13, аrticle 93.

    Google Scholar 

  82. Madelung, C.F., Falk, M.K., and Sorensen, T.L., The association between neovascular age-related macular degeneration and regulatory T cells in peripheral blood, Ophthalmology, 2015, vol. 9, pp. 1147–1154.

    Google Scholar 

  83. Maminishkis, A., Jalickee, S., Blaug, S.A., et al., The P2Y2 receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, pp. 3555–3566.

    PubMed  Google Scholar 

  84. Maneu, V., Lax, P., and Cuenca, N., Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases, Neural Regen. Res., 2022, vol. 17, no. 1, pp. 103–104.

    PubMed  Google Scholar 

  85. Marc, R.E., Retinal neurotransmitters, Vis. Neurosci., 2003, vol. 85, pp. 6187–6191.

    Google Scholar 

  86. Markitantova, Y.V. and Simirskii, V.N., The role of the redox system in initiation of neural eye tissues regenerative response in vertebrates, Russ. J. Dev. Biol., 2020a, vol. 51, pp. 16–30.

    Google Scholar 

  87. Markitantova, Y.V. and Simirskii, V.N., Inherited eye diseases with retinal manifestations through the eyes of homeobox genes, Int. J. Mol. Sci., 2020b, vol. 21, no. 5, art. 1602.

    CAS  PubMed Central  Google Scholar 

  88. Martins, R.A.P. and Pearson, R.A., Control of cell proliferation by neurotransmitters in the developing vertebrate retina, Brain Res., 2008, vol. 1192, pp. 37–60.

    CAS  PubMed  Google Scholar 

  89. Massé, K. and Dale, N., Purines as potential morphogens during embryonic development, Purinergic Signal., 2012, vol. 8, pp. 503–521.

    PubMed  PubMed Central  Google Scholar 

  90. Massey, S.C., O’Brien, J.J., Trexler, E.B., et al., Multiple neuronal connexins in the mammalian retina, Cell Commun. Adhesion, 2003, vol. 10, nos. 4–6, pp. 425–430.

    CAS  Google Scholar 

  91. McMurtrey, R.J., Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration, J. Tissue Eng., 2016, vol. 7, pp. 1–8.

    CAS  Google Scholar 

  92. Medrano, M.P., Bejarano, C.A., Battista, A.G., et al., Injury-induced purinergic signalling molecules upregulate pluripotency gene expression and mitotic activity of progenitor cells in the zebrafish retina, Purinergic Signal., 2017, vol. 4, pp. 443–465.

    Google Scholar 

  93. Mellough, C.B., Bauer, R., Collin, J., et al., An integrated transcriptional analysis of the developing human retina, Development, 2019, vol. 146, no. 2, art. dev169474.

    PubMed  PubMed Central  Google Scholar 

  94. Metea, M.R. and Newman, E.A., Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling, J. Neurosci., 2006, vol. 26, pp. 2862–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Meyer, C.H., Hotta, K., Peterson, W.M., et al., Effect of INS37217, a P2Y2 receptor agonist, on experimental retinal detachment and electroretinogram in adult rabbits, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, pp. 3567–3574.

    PubMed  Google Scholar 

  96. Mishra, S.K., Braun, N., Shukla, V., et al., Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation, Development, 2006, vol. 133, pp. 675–684.

    CAS  PubMed  Google Scholar 

  97. Mitashov, V.I., Characteristics of mitotic cycles of pigment epithelium cells and retinal rudiment in adult newts (Triturus cristatus, Triturus taeniatus), Dokl. Akad. Nauk SSSR, 1969, vol. 189, no. 3, pp. 666–669.

    CAS  PubMed  Google Scholar 

  98. Mitchell, C.H., Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space, J. Physiol., 2001, vol. 534, pp. 193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mitchell, C.H. and Reigada, D., Purinergic signalling in the subretinal space: a role in the communication between the retina and the RPE, Purinergic Signal., 2008, vol. 4, pp. 101–107.

    CAS  PubMed  Google Scholar 

  100. Moran-Jimenez, M.J. and Matute, C., Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system, Brain Res. Mol. Brain Res., 2000, vol. 78, pp. 50–58.

    CAS  PubMed  Google Scholar 

  101. Nagase, K., Tomi, M., Tachikawa, M., et al., Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier, Biochim. Biophys. Acta, 2006, vol. 1758, no. 1, pp. 13–19.

    CAS  PubMed  Google Scholar 

  102. Nascimento, J.L., Sawada, L.A., Oliveira, K.R.M., et al., GABA and glutamate transporters: new events and function in the vertebrate retina, Psychol. Neurosci., 2013, vol. 6, no. 2, pp. 145–150.

    Google Scholar 

  103. Niyadurupola, N., Sidaway, P., and Ma, N., P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration, Invest. Ophthalmol. Vis. Sci., 2013, vol. 54, pp. 2163–2170.

    PubMed  Google Scholar 

  104. Notomi, S., Hisatomi, T., Murakami, Y., et al., Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage, PLoS One, 2013, vol. 8, art. e53338.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nunes, P.H., Calaza, K.C., Albuquerque, L.M., et al., Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina, Int. J. Dev. Neurosci., 2007, vol. 25, no. 8, pp. 499–508.

    CAS  PubMed  Google Scholar 

  106. Oh, J., Smiddy, W.E., and Kim, S.S., Antiplatelet and anticoagulation therapy in vitreoretinal surgery, Am. J. Ophthalmol., 2011, vol. 151, no. 6, pp. 934–939.

    PubMed  Google Scholar 

  107. Ohnuma, S. and Harris, W.A., Neurogenesis and the cell cycle, Neuron, 2003, vol. 40, no. 2, pp. 199–208.

    CAS  PubMed  Google Scholar 

  108. Olivier, E., Dutot, M., Regazzetti, A., et al., P2X7-pannexin-1 and amyloidβ-induced oxysterol input in human retinal cell: role in age-related macular degeneration?, Biochimie, 2016, vol. 127, pp. 70–78.

    CAS  PubMed  Google Scholar 

  109. Ornelas, I.M., Silva, T.M., Fragel-Madeira, L., et al., Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina, PLoS One, 2013, vol. 8, no. 1, e53517.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pannicke, T., Frommherz, I., Biedermann, B., et al., Differential effects of P2Y1 deletion on glial activation and survival of photoreceptors and amacrine cells in the ischemic mouse retina, Cell Death Dis., 2014, vol. 5, no. 7, art. e1353

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pearson, R., Catsicas, M., Becker, D., et al., Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone, J. Neurosci., 2002, vol. 22, pp. 7569–7579.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pearson, R.A., Dale, N., Llaudet, E., et al., ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation, Neuron, 2005, vol. 46, no. 5, pp. 731–744.

    CAS  PubMed  Google Scholar 

  113. Pequignot, M.O., Provost, C., Salle, S., et al., The retinal pigment epithelium undergoes massive apoptosis during early differentiation and pigmentation of the optic cup, Mol. Vis., 2011, vol. 17, pp. 989–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Perron, M., Kanekar, S., Vetter, M.L., et al., The genetic sequence of retinal development in the ciliary margin of the Xenopus eye, Dev. Biol., 1998, vol. 199, pp. 185–200.

    CAS  PubMed  Google Scholar 

  115. Pintor, P., Sánchez-Nogueiro, J., Irazu, M., et al., Immunolocalisation of P2Y receptors in the rat eye, Purinergic Signal., 2004, vol. 1, pp. 83–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pirvu, A.S., Andrei, A.M., and Stanciulescu, A.C., NAD+ metabolism and retinal degeneration, Exp. Ther. Med., 2021, vol. 22, no. 1, аrticle 670.

  117. Potucek, Y.D., Crain, J.M., and Watters, J.J., Purinergic receptors modulate map kinases and transcription factors that control microglial inflammatory gene expression, Neurochem. Int., 2006, vol. 49, no. 2, pp. 204–214.

    CAS  PubMed  Google Scholar 

  118. Prada, C., Puga, J., Pérez-Méndez, L., et al., Spatial and temporal patterns of neurogenesis in the chick retina, Eur. J. Neurosci., 1991, vol. 3, pp. 559–569.

    PubMed  Google Scholar 

  119. Puthussery, T. and Fletcher, E.L., Synaptic localization of P2X7 receptors in the rat retina, J. Comp. Neurol., 2004, vol. 472, no. 1, pp. 13–23.

    CAS  PubMed  Google Scholar 

  120. Puthussery, T. and Fletcher, E.L., P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina, J. Comp. Neurol., 2006, vol. 496, pp. 595–609.

    CAS  PubMed  Google Scholar 

  121. Puthussery, T., Yee, P., Vingrys, A.J., et al., Evidence for the involvement of purinergic P2X7 receptors in outer retinal processing, Eur. J. Neurosci., 2006, vol. 24, pp. 7–19.

    PubMed  Google Scholar 

  122. Quazi, F. and Molday, R.S., ATP-binding cassette transporter abca4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 13, pp. 5024–5029.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ramachandra, R.S. and Fliesler, S.J., Cholesterol homeostasis in the vertebrate retina: biology and pathobiology, J. Lipid Res., 2021, vol. 62, art. 100057.

    Google Scholar 

  124. Raymond, P.A., Barthel, L.K., Bernardos, R.L., et al., Molecular characterization of retinal stem cells and their niches in adult zebrafish, BMC Dev. Biol., 2006, vol. 6, art. 36.

    PubMed  PubMed Central  Google Scholar 

  125. Reichenbach, A. and Bringmann, A., Purinergic signaling in retinal degeneration and regeneration, Neuropharmacology, 2016, vol. 104, pp. 194–211.

    CAS  PubMed  Google Scholar 

  126. Resta, V., Novelli, E., Vozzi, G., et al., Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP, Eur. J. Neurosci., 2007, vol. 25, no. 9, pp. 2741–2754.

    PubMed  Google Scholar 

  127. Ricatti, M.J., Battista, A.G., Zorrilla, Z.M., et al., Purinergic signals regulate daily S-phase cell activity in the ciliary marginal zone of the zebrafish retina, J. Biol. Rhythms, 2011, no. 2, pp. 107–117.

  128. Rosenberg, S.S. and Spitzer, N.C., Calcium signaling in neuronal development, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, no. 10, art. a004259.

    PubMed  PubMed Central  Google Scholar 

  129. Sakamoto, K., Endo, K., Suzuki, T., et al., P2X7 receptor antagonists protect against N-methyl-D-aspartic acid-induced neuronal injury in the rat retina, Eur. J. Pharmacol., 2015, vol. 756, pp. 52–58.

    CAS  PubMed  Google Scholar 

  130. Sanches, G., de Alencar, L.S., and Ventura, A.L., ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade, Int. J. Dev. Neurosci., 2002, vol. 20, pp. 21–27.

    CAS  PubMed  Google Scholar 

  131. Sanderson, J., Dartt, D.A., Trinkaus-Randall, V., et al., Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland, Exp. Eye Res., 2014, vol. 127, pp. 270–279.

    CAS  PubMed  Google Scholar 

  132. Santiago, A.R., Baptista, F.I., Santos, P.F., et al., Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases, Mediators Inflamm., 2014, vol. 2014, art. 465694.

    PubMed  PubMed Central  Google Scholar 

  133. Schacher, S., Wu, F., and Sun, Z.Y., Pathway-specific synaptic plasticity: activity-dependent enhancement and suppression of long-term heterosynaptic facilitation at converging inputs on a single target, J. Neurosci., 1997, vol. 17, no. 2, pp. 597–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Seitz, R., Ohlmann, A., and Tamm, E., The role of Müller glia and microglia in glaucoma, Cell Tissue Res., 2013, vol. 353, no. 2, pp. 339–345.

    PubMed  Google Scholar 

  135. Sennlaub, F., Courtois, Y., and Goureau, O., Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy, J. Neurosci., 2002, vol. 22, no. 10, pp. 3987–3993.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sholl-Franco, A., Fragel-Madeira, L., Macama, A.C., et al., ATP controls cell cycle and induces proliferation in the mouse developing retina, Int. J. Dev. Neurosci., 2010, vol. 28, no. 1, pp. 63–73.

    CAS  PubMed  Google Scholar 

  137. Sinha, T., Naash, M.I., and Al-Ubaidi, M.R., the symbiotic relationship between the neural retina and retinal pigment epithelium is supported by utilizing differential metabolic pathways, iScience, 2020a, vol. 23, no. 4, art. 101004.

  138. Sinha, T., Naash, M.I., and Al-Ubaidi, M.R., Flavins act as a critical liaison between metabolic homeostasis and oxidative stress in the retina, Front. Cell Dev. Biol., 2020b, vol. 27, no. 8, art. 861.

    Google Scholar 

  139. Spinozzi, E., Baldassarri, C., Acquaticci, L., et al., Adenosine receptors as promising targets for the management of ocular diseases, Med. Chem. Res., 2021, vol. 30, pp. 353–370.

    CAS  Google Scholar 

  140. Stacy, R.C. and Wong, R.O.L., Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina, J. Comp. Neurol., 2003, vol. 456, pp. 154–166.

    PubMed  Google Scholar 

  141. Sugioka, M., Fukuda, Y., and Yamashita, M., Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina, J. Physiol., 1996, vol. 493, pp. 855–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sugioka, M., Zhou, W.L., Hofmann, H.D., et al., Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo, Int. J. Dev. Neurosci., 1999, vol. 17, pp. 135–144.

    CAS  PubMed  Google Scholar 

  143. Sugiyama, T., Oku, H., Shibata, M., et al., Involvement of P2X7 receptors in the hypoxia-induced death of rat retinal neurons, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 6, pp. 3236–3243.

    PubMed  Google Scholar 

  144. Sugiyama, T., Role of P2X7 receptors in the development of diabetic retinopathy, World J. Diabetes, 2014, vol. 5, pp. 141–145.

    PubMed  PubMed Central  Google Scholar 

  145. Swarup, A., Samuels, I.S., Bell, B.A., et al., Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells, Am. J. Physiol. Cell Physiol., 2019, vol. 316, pp. 121–133.

    Google Scholar 

  146. Tagami, M., Kusuhara, S., Honda, S., et al., Expression of ATP-binding cassette transporters at the inner blood-retinal barrier in a neonatal mouse model of oxygen-induced retinopathy, Brain Res., 2009, vol. 1283, pp. 186–193.

    CAS  PubMed  Google Scholar 

  147. Tarallo, V., Hirano, Y., Gelfand, B.D., et al., DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88, Cell, 2012, vol. 149, pp. 847–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tian, L., Kazmierkiewicz, K.L., and Bowman, A.S., Transcriptome of the human retina, retinal pigmented epithelium and choroid, Genomics, 2015, vol. 105, pp. 253–264.

    CAS  PubMed  Google Scholar 

  149. Tomi, M. and Hosoya, K., The role of blood–ocular barrier transporters in retinal drug disposition: an overview, Expert. Opin. Drug Metab. Toxicol., 2010, vol. 6, no. 9, pp. 1111–1124.

    CAS  PubMed  Google Scholar 

  150. Traba, J., Satrustegui, J., and del Arco, A., Adenine nucleotide transporters in organelles: novel genes and functions, Cell. Mol. Life Sci., 2011, vol. 68, pp. 1183–1206.

    CAS  PubMed  Google Scholar 

  151. Tsukamoto, Y., Morphological survey from neurons to circuits of the mouse retina, Methods Mol. Biol., 2018, vol. 1753, pp. 3–25.

    CAS  PubMed  Google Scholar 

  152. Tsybovsky, Y., Molday, R.S., and Palczewski, K., The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease, Adv. Exp. Med. Biol., 2010, vol. 703, pp. 105–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Uckermann, O., Wolf, A., Kutzera, F., et al., Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide, J. Neurosci. Res., 2006, vol. 83, pp. 538–550.

    CAS  PubMed  Google Scholar 

  154. Vecino, E., Rodriguez, F.D., Ruzafa, N., et al., Glia-neuron interactions in the mammalian retina, Prog. Ret. Eye Res., 2016, vol. 51, pp. 1–40.

    CAS  Google Scholar 

  155. Ventura, A.L.M., Santos-Rodrigues, A.D., Mitchell, C.H., et al., Purinergic signaling in the retina: from development to disease, Brain Res. Bull., 2019, vol. 151, pp. 92–108.

    CAS  PubMed  Google Scholar 

  156. Verkhratsky, A. and Burnstock, G., Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance, Bio Essays, 2014, vol. 36, no. 7, pp. 697–705.

    CAS  Google Scholar 

  157. Vessey, K.A. and Fletcher, E.L., Rod and cone pathway signalling is altered in the P2X7 receptor knock out mouse, PLoS One, 2012, vol. 7, no. 1, art. e29990.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Di Virgilio, F., Ben, D.D., Sarti, A.C., et al., The P2X7 receptor in infection and inflammation, Immunity, 2017, vol. 47, no. 1, pp. 15–31.

    CAS  PubMed  Google Scholar 

  159. Voelgyi, B., Deans, M.R., Paul, D.L., et al., Convergence and segregation of the multiple rod pathways in mammalian retina, J. Neurosci., 2004, vol. 24, no. 49, pp. 11182–11192.

    CAS  Google Scholar 

  160. Voigt, J., Grosche, A., Vogler, S., et al., Nonvesicular release of ATP from rat retinal glial (Müller) cells is differentially mediated in response to osmotic stress and glutamate, Neurochem. Res., 2015, vol. 40, no. 4, pp. 651–660.

    CAS  PubMed  Google Scholar 

  161. Wan, W., Cui, D., Yang, X., et al., Expression of adenosine receptors in human retinal pigment epithelium cells in vitro, Chin. Med. J. (Engl.), 2011, vol. 124, no. 8, pp. 1139–1144.

    CAS  Google Scholar 

  162. Wang, J.C.-C. and Harris, W.A., The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification, Dev. Biol., 2005, vol. 285, pp. 101–115.

    CAS  PubMed  Google Scholar 

  163. Ward, M.M., Puthussery, T., Vessey, K.A., et al., The role of purinergic receptors in retinal function and disease, Adv. Exp. Med. Biol., 2010, vol. 664, pp. 385–391.

    CAS  PubMed  Google Scholar 

  164. Wehrwein, E., Thompson, S.A., Coulibaly, S.F., et al., Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxicity, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, no. 5, pp. 1531–1543.

    PubMed  Google Scholar 

  165. Weick, M., Wiedemann, P., Reichenbach, A., et al., Resensitization of P2Y receptors by growth factor-mediated activation of the phosphatidylinositol-3 kinase in retinal glial cells, Invest. Ophthalmol. Vis. Sci., 2005, vol. 46, pp. 1525–1532.

    PubMed  Google Scholar 

  166. Wheeler-Schilling, T.H., Marquordt, K., Kohler, K., et al., Identification of purinergic receptors in retinal ganglion cells, Brain Res. Mol. Brain Res., 2001, vol. 92, pp. 177–180.

    CAS  PubMed  Google Scholar 

  167. Wu, D.M., Kawamura, H., Sakagami, K., et al., Cholinergic regulation of pericyte-containing retinal microvessels, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, no. 6, pp. 2083–2090.

    Google Scholar 

  168. Wurm, A., Erdmann, I., Bringmann, A., et al., Expression and function of P2Y receptors on Müller cells of the postnatal rat retina, Glia, 2009, vol. 57, pp. 1680–1690.

    PubMed  Google Scholar 

  169. Xia, J., Lim, J.C., Lu, W., et al., Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors, J. Physiol., 2012, vol. 590, no. 10, pp. 2285–2304.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, H. and Tian, N., Glycine receptor-mediated synaptic transmission regulates the maturation of ganglion cell synaptic connectivity, J. Comp. Neurol., 2008, vol. 509, no. 1, pp. 53–71.

    PubMed  PubMed Central  Google Scholar 

  171. Yang, D. and Chen, J., The P2X7 receptor in amd, Austin. J. Clin. Ophthalmol., 2014, vol. 1, no. 3, p. 1012.

    Google Scholar 

  172. Yegutkin, G.G., Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade, Biochim. Biophys. Acta, 2008, vol. 1783, no. 5, pp. 673–694.

    CAS  PubMed  Google Scholar 

  173. Zhang, X., Zhang, M., Laties, A.M., et al., Balance of purines may determine life or death of retinal ganglion cells as A3 adenosine receptors prevent loss following P2X7 receptor stimulation, J. Neurochem., 2006, vol. 98, no. 2, pp. 566–575.

    CAS  PubMed  Google Scholar 

  174. Zhang, S., Li, H., Li, B., et al., Adenosine a1 receptors selectively modulate oxygen-induced retinopathy at the hyperoxic and hypoxic phases by distinct cellular mechanisms, Invest. Ophthalmol. Vis. Sci., 2015, vol. 56, no. 13, pp. 8108–8119.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, X., Alhasani, R.H., Zhou, X., et al., Oxysterols and retinal degeneration, Br. J. Pharmacol., 2021. https://doi.org/10.1111/bph.15391

  176. Zhong, Y., Yang, Z., Huang, W.C., et al., Adenosine, adenosine receptors and glaucoma: an updated overview, Biochim. Biophys. Acta, 2013, vol. 1830, pp. 2882–2890.

    CAS  PubMed  Google Scholar 

  177. Zimmermann, H., Zebisch, M., and Strater, N., Cellular function and molecular structure of ectonucleotidases, Purinergic Signal., 2012, vol. 8, no. 3, pp. 437–502.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Core Centrum of Koltzov Institute of Developmental Biology of the Russian Academy of Sciences.

Funding

This work was performed within the framework of the Government Program of Basic Research of Koltzov Institute of Developmental Biology of the Russian Academy of Science (IDB RAS), 2021, no. 0088-2021-0017.

Author information

Authors and Affiliations

Authors

Contributions

The authors made the same contribution to the preparation of materials and the writing of this review.

LIST OF ABBREVIATIONS

ATP

Adenosine triphosphate

ADP

Adenosine diphosphate

AMP

Adenosine monophosphate

ATPase

Adenosinetriphosphatase

Acetyl-CoA

Acetylcoenzyme A

AMD

Age-related macular retinal dystrophy

GABA

Gamma-aminobutyric acid

DNA

Deoxyribonucleic acid

NADPH

Nicotinamide-β-adenine dinucleotide phosphate

PSS

Purinergic signaling system

RPE

Retinal pigment epithelium

ABC transporters

Transport proteins containing an ATP-binding domain

UTP

Uridine triphosphate

cAMP

Cyclic adenosine monophosphate

cGMP

Cyclic guanosine monophosphate

ALP

(alkaline phosphatase)

Alkaline phosphatase

AR

Metabotropic receptors for adenosine

BDNF (brain-derived neurotrophic factor)

Brain-derived neurotrophic factor

BrdU (Bromodeoxyuridine/5-bromo-2'-deoxyuridine)

Bromodeoxyuridine

CNT (concentrative nucleoside transporter)

Concentrative nucleoside transporters

eN (ecto-5'-nucleotidase)

Ecto-5'-nucleotidase

ENT

Equilibrium nucleoside transporters

ENTPD

Ectonucleoside triphosphate diphosphohydrolase

ENPP

Ectonucleotide pyrophosphatase/phosphodiesterase

FGF (fibroblast growth factor)

Fibroblast growth factor

G2 (period of rapid cell growth and protein synthesis in cell cycle preceding mitosis)

Postsynthetic or premitotic phase of the cell cycle

NO (nitric oxide)

Nitric oxide

iNOS (inducible nitric oxide synthase)

Inducible nitric oxide synthase

IP3 (inositol trisphosphate)

Inositol-1,4,5-triphosphate

M

Phase of mitosis

MAPK (mitogen-activated protein kinase)

Mitogen-activated protein kinase

NGF (nerve growth factor)

Nerve growth factor

P2XR (ATP-gated P2X receptor cation channel family)

Family of ATP-controlled P2X receptor cationic channels

P2YR

Metabotropic G-protein-bound receptors

PCNA (proliferating cell nuclear antigen)

Proliferating cell nuclear antigen

PI3K/Akt

PI3K/Akt signaling pathway

PKC (protein kinase C)

Protein kinase C

PLC (phospholipase C)

Phospholipase C

S-phase

The phase of DNA replication

TGF (transforming growth factor)

Transforming growth factor

Corresponding authors

Correspondence to Yu. V. Markitantova or V. N. Simirskii.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the use of animals in experiments and the animal care conditions have been met.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markitantova, Y.V., Simirskii, V.N. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 52, 430–448 (2021). https://doi.org/10.1134/S1062360421060084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421060084

Keywords: