Skip to main content
Log in

Role of External Factors in Embryogenesis of Apis mellifera

  • DEVELOPMENTAL BIOLOGY OF ANIMALS (INVERTEBRATES AND VERTEBRATES)
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The embryonic development of honey bees has been studied for more than 150 years (Bütschli, 1870) and a lot of data on the embryogenesis of Apis mellifera L. has been accumulated. However, bees are rarely used as a research objects in modern insect embryology. In addition to the importance of bees as pollinators and producers of biologically active substances, the participation of social behavior in controlling the course of individual development of this group of Hymenoptera is of great interest. This review provides information about external factors (biotic and abiotic) that affect the embryogenesis of A. mellifera, including those related to social behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aamidor, S.E., Yagound, B., Ronai, I., et al., Sex mosaics in the honeybee: how haplodiploidy makes possible the evolution of novel forms of reproduction in social hymenoptera, Biol. Lett., 2018, vol. 14, no. 11, p. 20180670.

    Article  Google Scholar 

  2. Al-Kahtani, S.N., Wegener, J., and Bienefeld, K., Variability of prenatal maternal investment in the honey bee (Apis mellifera), J. Entomol., 2013, no. 10, pp. 35–42.

  3. Allemand, R., Influence de l’intensite d’éclairement sur l’expression du rythme journalier d’oviposition de Drosophila melanogaster en conditions lumineuses LD 12:12, Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences, ser. D, Paris, 1977, no. 284, pp. 1553–1556.

  4. Amiri, E., Le, K., Melendez, C.V., et al., Egg-size plasticity in Apis mellifera: honey bee queens alter egg size in response to both genetic and environmental factors, J. Evol. Biol., 2020.

  5. Astaurov, B.L., Partenogenez, androgenez i poliploidiya (Parthenogenesis, Androgenesis, and Polyploidy), Moscow: Nauka, 1977.

  6. Augusto, S. and Garófalo, C., Bionomics and sociological aspects of Euglossa fimbriata (Apidae, Euglossini), Genet. Mol. Res., 2009, vol. 8, no. 2, pp. 525–538.

    Article  CAS  Google Scholar 

  7. Borodacheva, V.T., The weight of eggs and the quality of queens and bees, Pchelovodstvo, 1973, no. 9, pp. 12–13.

  8. Bütschli, O., Zur Entwicklungsgeschichte der Biene, Zeit. Wissensch. Zool., 1870, no. 19, pp. 519–564.

  9. Cridge, A.G., Lovegrove, M.R., Skelly, J.G., et al., The honeybee as a model insect for developmental genetics, Genesis, 2017, vol. 55, no. 5.

  10. Cruz-Landim Carminda, Abelhas: morfologia e função de sistemas, São Paulo: Editora UNESP, 2009.

    Google Scholar 

  11. Dapporto, L., Bruschini, C., Cervo, R., et al., Hydrocarbon rank signatures correlate with differential oophagy and dominance behaviour in Polistes dominulus foundresses, J. Exp. Biol., 2010, vol. 213, no. 3, pp. 453–458.

    Article  CAS  Google Scholar 

  12. Detlaf, T.A., Dimensionless criteria for the development of embryos, larvae, and pupae of Drosophila and bee embryos in the tables of normal development, Ontogenez, 1995, vol. 26, no. 2, pp. 125–131.

    CAS  PubMed  Google Scholar 

  13. Detlaf, T.A., Temperaturno-vremennye zakonomernosti razvitiya poikilotermnykh zhivotnykh (Temperature and Temporal Patterns of Development of Poikilothermic Animals), Moscow: Nauka, 2001, рр. 143–150.

  14. DuPraw, E.J., Research on the honey bee egg, Gleanings Bee Culture, 1960, no. 88, pp. 104–111.

  15. DuPraw, E.J., The honeybee embryo, in Methods in Developmental Biology, Wilt, F. and Wessels, N., Eds., New York: Crowell Press, 1967, pp. 183–217.

    Google Scholar 

  16. Dzierżon, J., Bienenzeitung, 1845, vol. l, p. 111.

    Google Scholar 

  17. Egorov, V.V., Kozin, R.B., and Korolev, A.V., Method for stimulating embryogenesis of bees, RF Patent no. 2395959, С2, 2010.

  18. Ernst, U., The Honeybee as a model to study worker policing, epigenetics, and ageing, in Science, Engineering and Technology, Leuven, K.U., Ed., 2016.

  19. Es’kov, E.K., Mikroklimat pchelinogo ul’ya i ego regulirovanie (The Microclimate of the Bee Hive and Its Regulation), Moscow: Rossel’khozizdat, 1978, рр. 46–47.

  20. Es’kov, E.K., Ekologiya medonosnoi pchely (Ecology of the Honey Bee), Moscow: Rosagropromizdat, 1990.

  21. Es’kov, E.K. and Chel’tsov, V.N., Ustoichivost’ razvivayushchikhsya pchel k ul’trafioletovomu oblucheniyu (Resistance of Developing Bees to Ultraviolet Irradiation), deposited in VINITI, Ryazan’, 1992, no. 1332-B92.

  22. Es’kov, E.K., Ekologiya medonosnoi pchely (Ecology of the Honey Bee), Ryazan’: Russkoe slovo, 1995.

  23. Es’kov, E.K. and Toboev, V.A., Impact of artificially generated electromagnetic fields on biological objects, Vestn. Chuvash. Univ., 2008, no. 2, pp. 28–36.

  24. Es’kov, E.K., Chel’tsov, V.N., and Khrustaleva, N.V., Vliyanie iskusstvennogo ul’trafioletovogo oblucheniya na zhiznesposobnost’ i morfogenez razvivayushchikhsya rabochikh pchel (Influence of Artificial Ultraviolet Irradiation on the Viability and Morphogenesis of Developing Worker Bees), deposited in VINITI, Ryazan’, 1991, no. 4633-B91.

  25. Free, J.B., Ferguson, A.W., and Simpkins, J.R., The behavior of queen honeybees and their attendants, Physiol. Entomol., 1992, no. 17, pp. 43–55.

  26. Geitmanek, Ya., On the diversity of bee eggs, S.-Kh. Zh. Chekhoslov., Praga, 1960, p. 96.

    Google Scholar 

  27. Gencer, H.V. and Woyke, J., Eggs from Apis mellifera caucasica laying workers are larger than from queens, J. Apicult. Res., 2006, no. 45, pp. 173–179.

  28. Harano, K., Sasaki, M., and Sasaki, K., Effects of reproductive state on rhythmicity, locomotor activity and body weight in the European honeybee, Apis mellifera queens (Hymenoptera, Apini), Sociobiology, 2007, no. 50, pp. 189–200.

  29. Henderson, C.E., Variability in the size of emerging drones and of drone and worker eggs in honey bee (Apis mellifera) colonies, J. Apicult. Res., 1992, no. 31, pp. 114–118.

  30. Holmes, M.J., Tan, K., Wang, Z., et al., Why acquiesce? Worker reproductive parasitism in the eastern honeybee (Apis cerana), J. Evol. Biol., 2014, vol. 27, no. 5, pp. 939–949

    Article  CAS  Google Scholar 

  31. Howlader Gitanjali and Sharma Vijay Kumar, Circadian regulation of egg-laying behavior in fruit flies Drosophila melanogaster, J. Insect Physiol., 2006, vol. 52, no. 8, pp. 779–785.

  32. Johnson, J.N., Lack of rhythmicity in the honey bee queen: an investigation of temporal behavioral patterns in Apis mellifera ligustica, Electron. Theses Dissertations, 2010, p. 1751.

    Google Scholar 

  33. Jordan, R., Über die beziehung der Eigrosse zum Umfang der Eiablage, Bienenvater, 1961, vol. 82, no. 5, pp. 132–134.

    Google Scholar 

  34. Kashkovskii, V.G. and Mashinskaya, N.D., On the cannibalism of honey bees, Pchelovodstvo, 1989, no. 8, pp. 10–13.

  35. Koeniger, N., Über die fähigkeit der bienenkonigin (Apis mellifica L.) zwischen arbeiterinnen-und drohnenzellen zu unterscheiden, Apidologie (Celle), 1970, no. 1, pp. 115–142.

  36. Lopatin, A.V. and Ishmuratova, N.M., Synthetic analogs of low molecular weight bioregulators of the honey bee Apis mellifera L. in the cultivation of the bumblebee Bombus terrestris L. (Hymenoptera: Apidae), Tr. Russ. Entomol. O-va, St. Petersburg, 2010, vol. 80, no. 4, pp. 188–195.

  37. Manjunatha, T., Hari, D. S., and Kumar, Sh.V., Egg-laying rhythm in Drosophila melanogaster, J. Genet., 2008, vol. 87, pp. 495–504.

    Article  Google Scholar 

  38. Martin, S.J. and Jones, G.R., Conservation of bio synthetic pheromone pathways in honeybees Apis, Naturwissenschaften, 2004, vol. 91, no. 5, pp. 232–236.

    Article  CAS  Google Scholar 

  39. Martin, S.J., Beekman, M., Wossler, T.C., et al., Parasitic cape honeybee workers, Apis mellifera capensis, evade policing, Nature, 2002, vol. 415, no. 6868, pp. 163–165.

    Article  CAS  Google Scholar 

  40. Martin, S.J., Correia-Oliveira, M.E., Shemilt, S., et al., Is the salivary gland associated with honey bee recognition compounds in worker honey bees (Apis mellifera)?, J. Chem. Ecol., 2018, vol. 44, nos. 7–8, pp. 650–657.

    Article  CAS  Google Scholar 

  41. McCabe, C. and Birley, A., Oviposition in the period genotypes of Drosophila melanogaster, Chronobiol. Int., 1998, vol. 15, no. 2, pp. 119–133.

    Article  CAS  Google Scholar 

  42. Miller, D.G. and Ratnieks, F.L.W., The timing of worker reproduction and breakdown of policing behaviour in queenless honey bee (Apis mellifera L.) societies, Insectes Soc., 2001, no. 48, pp. 178–184.

  43. Misof, B., Liu, S., Meusemann, K., et al., Phylogenomics resolves the timing and pattern of insect evolution, Science, 2014, vol. 346, no. 6210, pp. 763–767.

    Article  CAS  Google Scholar 

  44. Moritz, R.F.A. and Sakofski, F., The role of the queen in circadian rhythms of honeybees (Apis mellifera L.), Behav. Ecol. Sociobiol., 1991, no. 29, pp. 361–365.

  45. Nelson, J.A., The Embryology of the Honey Bee, Princeton: Univ. Press, 1915.

    Book  Google Scholar 

  46. Nolan, W.J., Do daily egg-laying rates of less than 3,000 found by recent investigators indicate average queenbees?, J. Econ. Entomol., 1927, vol. 20, no. 3, pp. 501–507.

    Article  Google Scholar 

  47. Oi, C.A., Brown, R.L., Carvalho da Silva, R., et al., Reproduction and signals regulating worker policing under identical hormonal control in social wasps, Sci. Rep., 2020, vol. 10, no. 1, p. 18971.

    Article  CAS  Google Scholar 

  48. Pchela medonosnaya (Apis mellifera) v geneticheskom pole. Ekologo-geneticheskie kharakteristiki (Honey Bee (Apis mellifera) in the Genetic Field: Ecological and Genetic Characteristics), Monakhova, M.A., Ed., Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2019.

  49. Roberts, W.C. and Taber, S., Egg-weight variance in honey bees, Ann. Entomol. Soc. Am., 1965, no. 58, pp. 303–306.

  50. Schmickl, T. and Crailsheim, K., Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages, J. Comp. Physiol. A, 2001, vol. 187, no. 7, pp. 541–547.

  51. Schnetter, M., Morphologische untersuchungen uber das differenzierungszentrum in der embryonal-entwicklung der honigbiene, Z. Morphol. Okol. Tiere, 1934, no. 29, pp. 114–195.

  52. Seeley, T.D., Honeybee Ecology: A Study of Adaptation in Social Life, Monogr. Behav. Ecol., 1985.

  53. Seeley, T.D., The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, 1995.

  54. Sheeba, V., Chandrashekaran, M.K., Joshi, A., et al., Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations, J. Exp. Zool., 2001, vol. 290, no. 5, pp. 541–549.

    Article  CAS  Google Scholar 

  55. Sieber, K., Dorman, T., Newell, N., et al., (Epi)genetic mechanisms underlying the evolutionary success of eusocial insects, Insects, 2021, vol. 12, no. 6, p. 498.

    Article  Google Scholar 

  56. Stark, R.E., Hefetz, A., Gerling, D., et al., Reproductive competition involving oophagy in the socially nesting bee Xylocopa sulcatipes, Naturwissenschaften, 1990, vol. 77, no. 1, pp. 38–40.

    Article  Google Scholar 

  57. Taber, S. and Roberts, W.C., Egg weight variability and its inheritance in the honey bee, Ann. Entomol. Soc. Am., 1963, no. 56, pp. 473–476.

  58. Tryasko, V.V., Signs of insemination of queen bees, Pchelovodstvo, 1951, no. 11, pp. 25–31.

  59. Tryasko, V.V., Female parthenogenesis of the honey bee, Pchelovodstvo, 1980, no. 4, pp. 13–14.

  60. Vijendravarma, R.K., Narasimha, S., and Kawecki, T.J., Effects of parental larval diet on egg size and offspring traits in Drosophila, Biol. Lett., 2010, vol. 6, no. 2.

  61. Wegener, J., Lorenz, M.W., and Bienefeld, K., Differences between queen- and worker-laid male eggs of the honey bee (Apis mellifera), Apidologie, 2010, vol. 41, no. 1, pp. 116–126.

    Article  Google Scholar 

  62. Wei, H., He, X., Liao, C., et al., A maternal effect on queen production in honeybees, Curr. Biol., 2019, vol. 29, no. 13, pp. 2208–2213.

    Article  CAS  Google Scholar 

  63. Woyke, J., Comparison of the size of eggs from Apis mellifera L. queens and laying workers, Apidologie, 1994, no. 25, pp. 179–187.

  64. Woyke, J., Size change of Apis mellifera eggs during the incubation period, J. Apicult. Res., 1998, no. 37, pp. 239–246.

  65. XXV mezhdunarodnyi kongress po pchelovodstvu Grenobl’-Frantsiya 8–14 sentyabrya 1975 (XXV International Congress of Beekeeping, Grenoble, France, September 8–14, 1975), Bucharest: Apimondia, 1975.

  66. Zagretdinov, A.F., Temporal organization of the egg-laying process by the uterus, Pchelovodstvo, 2008, no. 6, pp. 18–20.

  67. Zagretdinov, A.F., Biorhythms of oviposition of a queen bee depending on the types of honey collection, bee breed and pollen selection within three days, Agrarn. Vestn. Urala, 2009, no. 10 (64), pp. 89–91.

  68. Zeid, A.S., Antennal sensilla of the queen, half-queen and worker of the egyptian honey bee, Apis mellifera lamarckii, J. Apicult. Res., 2001, vol. 40, no. 2, pp. 53–58.

    Article  Google Scholar 

  69. Zeid, A.S., Comparison of eggs produced by queens, halfqueens and worker bees and weight ofemerging workers in Apis mellifera lamarckii, J. Apicult. Res., 2020, pp. 685–690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Boguslavsky.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boguslavsky, D.V., Zakharov, I.S. Role of External Factors in Embryogenesis of Apis mellifera. Russ J Dev Biol 52, 422–429 (2021). https://doi.org/10.1134/S1062360421060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421060023

Keywords:

Navigation