Skip to main content
Log in

Formation of Biomolecular Condensates: Regulation of Embryogenesis at the Cellular Level

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Many morphogenetic processes during ontogenesis are determined by changes in the structure and functions of embryonic cells. The greatest plasticity of the cellular organization is given by membrane-less organelles or biomolecular condensates, which can be formed in the nucleus or cytoplasm by the mechanism of liquid–liquid phase separation. The flexibility of biogenesis of biomolecular condensates and the high dynamics of their components make it possible to change the cellular organization quickly, which leads to changes in the fate of cells, and, as a result, in the course of embryogenesis. In this review, using the example of germ granules, one of the types of membrane-less structures, the relationship between the plasticity of cellular organization and the implementation of early embryogenesis processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arias Escayola, D. and Neugebauer, K.M., Dynamics and function of nuclear bodies during embryogenesis, Biochemistry, 2018, vol. 57, pp. 2462–2469.

    Article  CAS  PubMed  Google Scholar 

  2. Arkov, A.L., Wang, J.-Y.S., Ramos, A., et al., The role of Tudor domains in germline development and polar granule architecture, Development, 2006, vol. 133, pp. 4053–4062.

    Article  CAS  PubMed  Google Scholar 

  3. Aulas, A., Fay, M.M., Lyons, S.M., et al., Stress-specific differences in assembly and composition of stress granules and related foci, J. Cell Sci., 2017, vol. 130, pp. 927–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banani, S.F., Rice, A.M., Peeples, W.B., et al., Compositional control of phase-separated cellular bodies, Cell, 2016, vol. 166, pp. 651–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banani, S.F., Lee, H.O., Hyman, A.A., et al., Biomolecular condensates: organizers of cellular biochemistry, Nat. Rev. Mol. Cell Biol., 2017, vol. 18, pp. 285–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bogolyubov, D.S., Membraneless organelles of eukaryotic cells: basic concepts and principles of formation, Tsitologiia, 2019, vol. 61, pp. 683–703.

    Article  Google Scholar 

  7. Bounedjah, O., Hamon, L., Savarin, P., et al., Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes, J. Biol. Chem., 2012, vol. 287, pp. 2446–2458.

    Article  CAS  PubMed  Google Scholar 

  8. Brangwynne, C.P., Eckmann, C.R., Courson, D.S., et al., Germline P granules are liquid droplets that localize by controlled dissolution/condensation, Science, 2009, vol. 324, pp. 1729–1732.

    Article  CAS  PubMed  Google Scholar 

  9. Breitwieser, W., Markussen, F.H., Horstmann, H., et al., Oskar protein interaction with Vasa represents an essential step in polar granule assembly, Genes Dev., 1996, vol. 10, pp. 2179–2188.

    Article  CAS  PubMed  Google Scholar 

  10. Broyer, R.M., Monfort, E., and Wilhelm, J.E., Cup regulates oskar mRNA stability during oogenesis, Dev. Biol., 2017, vol. 421, pp. 77–85.

    Article  CAS  PubMed  Google Scholar 

  11. Buchan, J.R. and Parker, R., Eukaryotic stress granules: the ins and outs of translation, Mol. Cell, 2009, vol. 36, pp. 932–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buchan, J.R., Yoon, J.-H., and Parker, R., Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae, J. Cell Sci., 2011, vol. 124, pp. 228–239.

    Article  CAS  PubMed  Google Scholar 

  13. Bullock, S.L. and Ish-Horowicz, D., Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis, Nature, 2001, vol. 414, pp. 611–616.

    Article  CAS  PubMed  Google Scholar 

  14. Carron, C., Balor, S., Delavoie, F., et al., Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing, J. Cell Sci., 2012, vol. 125, pp. 4532–4542.

    Article  CAS  PubMed  Google Scholar 

  15. Castagnetti, S., Hentze, M.W., and Ephrussi, A., Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries, Development, 2000, vol. 127, pp. 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  16. Chekulaeva, M., Hentze, M.W., and Ephrussi, A., Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles, Cell, 2006, vol. 124, pp. 521–533.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J., Melton, C., Suh, N., et al., Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition, Genes Dev., 2011, vol. 25, pp. 755–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chong, P.A., Vernon, R.M., and Forman-Kay, J.D., RGG/RG motif regions in RNA binding and phase separation, J. Mol. Biol., 2018, vol. 430, pp. 4650–4665.

    Article  CAS  PubMed  Google Scholar 

  19. Chouaib, R., Safieddine, A., Pichon, X., et al., A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting, Dev. Cell, 2020. https://doi.org/10.1016/j.devcel.2020.07.010

  20. Chujo, T., Yamazaki, T., and Hirose, T., Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies, Biochim. Biophys. Acta, 2016, vol. 1859, pp. 139–146.

    Article  CAS  PubMed  Google Scholar 

  21. Corbet, G.A. and Parker, R., RNP granule formation: lessons from p-bodies and stress granules, Cold Spring Harb. Symp. Quant. Biol., 2019, vol. 84, pp. 203–215.

    Article  PubMed  Google Scholar 

  22. Courchaine, E.M., Lu, A., and Neugebauer, K.M., Droplet organelles?, EMBO J., 2016, vol. 35, pp. 1603–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Decker, C.J. and Parker, R., P-bodies and stress granules: possible roles in the control of translation and mRNA degradation, Cold Spring Harb. Perspect. Biol., 2012, vol. 4, no. 9. a012286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Eagle, W.V.I., Yeboah-Kordieh, D.K., Niepielko, M.G., et al., Distinct cis-acting elements mediate targeting and clustering of Drosophila polar granule mRNAs, Development, 2018, vol. 145, dev.164657.

  25. Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., et al., The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 7189–7194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ephrussi, A. and Lehmann, R., Induction of germ cell formation by oskar, Nature, 1992, vol. 358, pp. 387–392.

    Article  CAS  PubMed  Google Scholar 

  27. Falkenberg, C.V., Carson, J.H., and Blinov, M.L., Multivalent molecules as modulators of RNA granule size and composition, Biophys. J., 2017, vol. 113, pp. 235–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, S.-J., Marchand, V., and Ephrussi, A., Drosophila Ge-1 promotes P body formation and oskar mRNA localization, PLoS One, 2011, vol. 6. e20612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feric, M., Vaidya, N., Harmon, T.S., et al., Coexisting liquid phases underlie nucleolar subcompartments, Cell, 2016, vol. 165, pp. 1686–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forrest, K.M. and Gavis, E.R., Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila, Curr. Biol., 2003, vol. 13, pp. 1159–1168.

    Article  CAS  PubMed  Google Scholar 

  31. Frise, E., Hammonds, A.S., and Celniker, S.E., Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape, Mol. Syst. Biol., 2010, vol. 6, p. 345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gao, M. and Arkov, A.L., Next generation organelles: structure and role of germ granules in the germline, Mol. Reprod. Dev., 2013, vol. 80, pp. 610–623.

    Article  CAS  PubMed  Google Scholar 

  33. Gavis, E.R. and Lehmann, R., Localization of nanos RNA controls embryonic polarity, Cell, 1992, vol. 71, pp. 301–313.

    Article  CAS  PubMed  Google Scholar 

  34. Glotzer, J.B., Saffrich, R., Glotzer, M., et al., Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes, Curr. Biol., 1997, vol. 7, pp. 326–337.

    Article  CAS  PubMed  Google Scholar 

  35. Hachet, O. and Ephrussi, A., Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization, Nature, 2004, vol. 428, pp. 959–963.

    Article  CAS  PubMed  Google Scholar 

  36. Hanazawa, M., Yonetani, M., and Sugimoto, A., PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans, J. Cell Biol., 2011, vol. 192, pp. 929–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayama, R., Rout, M.P., and Fernandez-Martinez, J., The nuclear pore complex core scaffold and permeability barrier: variations of a common theme, Curr. Opin. Cell. Biol., 2017, vol. 46, pp. 110–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hird, S.N., Paulsen, J.E., and Strome, S., Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation, Development, 1996, vol. 122, pp. 1303–1312.

    Article  CAS  PubMed  Google Scholar 

  39. Hubstenberger, A., Courel, M., Benard, M., et al., P-body purification reveals the condensation of repressed mRNA regulons, Mol. Cell, 2017, vol. 68, pp. 144–157. e5.

  40. Huelgas-Morales, G., Silva-García, C.G., Salinas, L.S., et al., The stress granule RNA-binding protein TIAR-1 protects female germ cells from heat shock in Caenorhabditis elegans, G3: Genes, Genomes, Genet., 2016, vol. 6, pp. 1031–1047.

    CAS  Google Scholar 

  41. Ivanov, P., Kedersha, N., and Anderson, P., Stress granules and processing bodies in translational control, Cold Spring Harb. Perspect. Biol., 2019, vol. 11. a032813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jalihal, A.P., Pitchiaya, S., Xiao, L., et al., Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change, Mol. Cell, 2020. https://doi.org/10.1016/j.molcel.2020.08.004

  43. Jud, M.C., Czerwinski, M.J., Wood, M.P., et al., Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway, Dev. Biol., 2008, vol. 318, pp. 38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kato, M., Han, T.W., Xie, S., et al., Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels, Cell, 2012, vol. 149, pp. 753–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kedersha, N., Stoecklin, G., Ayodele, M., et al., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J. Cell Biol., 2005, vol. 169, pp. 871–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khong, A., Matheny, T., Jain, S., et al., The stress granule transcriptome reveals principles of mRNA accumulation in stress granules, Mol. Cell, 2017, vol. 68, pp. 808–820. е5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, B., Cooke, H.J., and Rhee, K., DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress, Development, 2012, vol. 139, pp. 568–578.

    Article  CAS  PubMed  Google Scholar 

  48. Kim, G., Pai, C.-I., Sato, K., et al., Region-specific activation of oskar mRNA translation by inhibition of Bruno-mediated repression, PLoS Genet., 2015, vol. 11. e1004992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kimura, K. and Kimura, A., Cytoplasmic streaming drifts the polarity cue and enables posteriorization of the Caenorhabditis elegans zygote at the side opposite of sperm entry, Mol. Biol. Cell, 2020, vol. 31, pp. 1765–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirino, Y., Vourekas, A., Kim, N., et al., Arginine methylation of vasa protein is conserved across phyla, J. Biol. Chem., 2010a, vol. 285, pp. 8148–8154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirino, Y., Vourekas, A., Sayed, N., et al., Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization, RNA, 2010b, vol. 16, pp. 70–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kistler, K.E., Trcek, T., Hurd, T.R., et al., Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells, Elife, 2018, vol. 7. e37949.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Knutson, A.K., Egelhofer, T., Rechtsteiner, A., et al., Germ granules prevent accumulation of somatic transcripts in the adult Caenorhabditis elegans germline, Genetics, 2017, vol. 206, pp. 163–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krishnakumar, P., Riemer, S., Perera, R., et al., Functional equivalence of germ plasm organizers, PLoS Genet., 2018, vol. 14. e1007696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lasko, P., Patterning the Drosophila embryo: a paradigm for RNA-based developmental genetic regulation, Wiley Interdiscip. Rev. RNA, 2020. https://doi.org/10.1002/wrna.1610

  56. Lee, C.-Y.S., Putnam, A., Lu, T., et al., Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins, Elife, 2020, vol. 9. e52896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lehmann, R. and Nüsslein-Volhard, C., Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila, Cell, 1986, vol. 47, pp. 141–152.

    Article  CAS  PubMed  Google Scholar 

  58. Li, P., Banjade, S., Cheng, H.-C., et al., Phase transitions in the assembly of multivalent signalling proteins, Nature, 2012, vol. 483, pp. 336–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, Y. and Page, D.C., Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice, Dev. Biol., 2005, vol. 288, pp. 309–316.

    Article  CAS  PubMed  Google Scholar 

  60. Lin, Y., Protter, D.S.W., Rosen, M.K., et al., Formation and maturation of phase-separated liquid droplets by RNA-binding proteins, Mol Cell, 2015, vol. 60, pp. 208–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, H., Wang, J.-Y.S., Huang, Y., et al., Structural basis for methylarginine-dependent recognition of Aubergine by Tudor, Genes Dev., 2010, vol. 24, pp. 1876–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahowald, A.P., Fine structure of pole cells and polar granules in Drosophila melanogaster, J. Exp. Zool., 1962, vol. 151, pp. 201–215.

    Article  Google Scholar 

  63. Mao, Y.S., Sunwoo, H., Zhang, B., et al., Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs, Nat. Cell Biol., 2011, vol. 13, pp. 95–101.

    Article  CAS  PubMed  Google Scholar 

  64. Markussen, F.H., Michon, A.M., Breitwieser, W., et al., Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly, Development, 1995, vol. 121, pp. 3723–3732.

    Article  CAS  PubMed  Google Scholar 

  65. Marnik, E.A. and Updike, D.L., Membraneless organelles: P granules in Caenorhabditis elegans, Traffic, 2019, vol. 20, pp. 373–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Misteli, T., The concept of self-organization in cellular architecture, J. Cell Biol., 2001, vol. 155, pp. 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Molliex, A., Temirov, J., Lee J., et al., Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization, Cell, 2015, vol. 163, pp. 123–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Musinova, Y.R., Lisitsyna, O.M., Sorokin, D.V., et al., RNA-dependent disassembly of nuclear bodies, J. Cell Sci., 2016, vol. 129, pp. 4509–4520.

    Article  CAS  PubMed  Google Scholar 

  69. Neil, C.R., Jeschonek, S.P., Cabral, S.E., et al., L-bodies are novel RNA-protein condensates driving RNA transport in Xenopus oocytes, BioRxiv preprint 2020. https://doi.org/10.1101/2020.05.08.084814

  70. Niepielko, M.G., Eagle, W.V.I., and Gavis, E.R., Stochastic seeding coupled with mRNA self-recruitment generates heterogeneous Drosophila germ granules, Curr. Biol., 2018, vol. 28, pp. 1872–1881. е3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noble, S.L., Allen, B.L., Goh, L.K., et al., Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development, J. Cell Biol., 2008, vol. 182, pp. 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nott, T.J., Petsalaki, E., Farber, P., et al., Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles, Mol. Cell, 2015, vol. 57, pp. 936–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palangi, F., Samuel, S.M., Thompson, I.R., et al., Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells, PLoS One, 2017, vol. 12. e0182059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Patterson, J.R., Wood, M.P., and Schisa, J.A., Assembly of RNP granules in stressed and aging oocytes requires nucleoporins and is coordinated with nuclear membrane blebbing, Dev. Biol., 2011, vol. 353, pp. 173–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pitt, J.N., Schisa, J.A., and Priess, J.R., P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA, Dev. Biol., 2000, vol. 219, pp. 315–333.

    Article  CAS  PubMed  Google Scholar 

  76. Putnam, A., Cassani, M., Smith, J., et al., A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos, Nat. Struct. Mol. Biol., 2019, vol. 26, pp. 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosario, R., Crichton, J.H., Stewart, H.L., et al., Dazl determines primordial follicle formation through the translational regulation of Tex14, FASEB J., 2019, vol. 33, pp. 14221–14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sabari, B.R., Dall’Agnese, A., and Young, R.A., Biomolecular condensates in the nucleus, Trends Biochem. Sci., 2020. https://doi.org/10.1016/j.tibs.2020.06.007

  79. Saha, S., Weber, C.A., Nousch, M., et al., Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism, Cell, 2016, vol. 166, pp. 1572–1584. е16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sampuda, K.M., Riley, M., and Boyd, L., Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans, BMC Cell Biol., 2017, vol. 18, p. 18.

  81. Schisa, J.A., Germ cell responses to stress: the role of RNP granules, Front. Cell Dev. Biol., 2019, vol. 7, p. 220.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schisa, J.A., Pitt, J.N., and Priess, J.R., Analysis of RNA associated with P granules in germ cells of C. elegans adults, Development, 2001, vol. 128, pp. 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  83. Seydoux, G., The P granules of C. elegans: a genetic model for the study of RNA–protein condensates, J. Mol. Biol., 2018, vol. 430, pp. 4702–4710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah, K.H., Zhang, B., Ramachandran, V., et al., Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae, Genetics, 2013, vol. 193, pp. 109–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sheth, U., Pitt, J., Dennis, S., et al., Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells, Development, 2010, vol. 137, pp. 1305–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shevtsov, S.P. and Dundr, M., Nucleation of nuclear bodies by RNA, Nat. Cell Biol., 2011, vol. 13, pp. 167–173.

    Article  CAS  PubMed  Google Scholar 

  87. Shin, Y. and Brangwynne, C.P., Liquid phase condensation in cell physiology and disease, Science, 2017, vol. 357. aaf4382.

    Article  CAS  Google Scholar 

  88. Sinsimer, K.S., Lee, J.J., Thiberge, S.Y., et al., Germ plasm anchoring is a dynamic state that requires persistent trafficking, Cell Rep., 2013, vol. 5, pp. 1169–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith, J., Calidas, D., Schmidt, H., et al., Spatial patterning of p granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3, Elife, 2016, vol. 5. e21337.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thandapani, P., O’Connor, T.R., Bailey, T.L., et al., Defining the RGG/RG motif, Mol. Cell, 2013, vol. 50, pp. 613–623.

    Article  CAS  PubMed  Google Scholar 

  91. Thomson, T. and Lasko, P., Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning, Genesis, 2004, vol. 40, pp. 164–170.

    Article  CAS  PubMed  Google Scholar 

  92. Tompa, P., Intrinsically disordered proteins: a 10-year recap, Trends Biochem. Sci., 2012, vol. 37, pp. 509–516.

    Article  CAS  PubMed  Google Scholar 

  93. Trcek, T. and Lehmann, R., Germ granules in Drosophila, Traffic, 2019, vol. 20, pp. 650–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trcek, T., Grosch, M., York, A., et al., Drosophila germ granules are structured and contain homotypic mRNA clusters, Nat. Commun., 2015, vol. 6, p. 7962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trcek, T., Douglas, T.E., Grosch, M., et al., Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters, Mol. Cell, 2020, vol. 78, pp. 941–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Updike, D.L. and Strome, S., A genome-wide RNAi screen for genes that affect the stability, distribution and function of p granules in Caenorhabditis elegans, Genetics, 2009, vol. 183, pp. 1397–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vo, H.D.L. Wahiduzzaman, Tindell, S.J., et al., Protein components of ribonucleoprotein granules from Drosophila germ cells oligomerize and show distinct spatial organization during germline development, Sci. Rep., 2019, vol. 9, p. 19190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Voronina, E. and Seydoux, G., The C. elegans homolog of nucleoporin Nup98 is required for the integrity and function of germline P granules, Development, 2010, vol. 137, pp. 1441–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Voronina, E., Seydoux, G., Sassone-Corsi, P., et al., RNA granules in germ cells, Cold Spring Harb. Perspect. Biol., 2011, vol. 3. a002774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wan, G., Fields, B.D., Spracklin, G., et al., Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance, Nature, 2018, vol. 557, pp. 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, J.T., Smith, J., Chen, B.-C., et al., Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans, Elife, 2014, vol. 3. e04591.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yao, R.-W., Xu, G., Wang, Y., et al., Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus, Mol. Cell, 2019, vol. 76, pp. 767–783. e11.

  103. Zatsepina, O.V., Dudnic, O.A., Chentsov, Y.S., et al., Reassembly of functional nucleoli following in situ unraveling by low-ionic-strength treatment of cultured mammalian cells, Exp. Cell Res., 1997a, vol. 233, pp. 155–168.

    Article  CAS  PubMed  Google Scholar 

  104. Zatsepina, O.V., Dudnic, O.A., Todorov, I.T., et al., Experimental induction of prenucleolar bodies (PNBs) in interphase cells: interphase PNBs show similar characteristics as those typically observed at telophase of mitosis in untreated cells, Chromosoma, 1997b, vol. 105, pp. 418–430.

    Article  CAS  PubMed  Google Scholar 

  105. Zilman, A., Aggregation, phase separation and spatial morphologies of the assemblies of FG nucleoporins, J. Mol. Biol., 2018, vol. 430, pp. 4730–4740.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.E. Dmitriev and Yu.V. Khramova for their discussion and valuable comments.

Funding

The work was performed with the financial support of the Russian Science Foundation (grant no. 18-14-00195 for E.V.S.) and the Russian Foundation for Basic Research (grant for Ph.D. Students no. 20-34-90156 for M.A.T.).

Author information

Authors and Affiliations

Authors

Contributions

The authors made the same contribution to the preparation and writing of this review.

Corresponding author

Correspondence to M. A. Tikhomirova.

Ethics declarations

The authors declare that they have no conflict of interests.

This review does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, M.A., Sheval, E.V. Formation of Biomolecular Condensates: Regulation of Embryogenesis at the Cellular Level. Russ J Dev Biol 52, 65–74 (2021). https://doi.org/10.1134/S1062360421020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421020077

Keywords:

Navigation