Skip to main content
Log in

Somatic Embryogenesis in Wheat and Barley Calli in vitro Is Determined by the Level of Indoleacetic and Abscisic Acids

  • EMBRYOGENESIS AND CARCINOGENESIS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The effect of a number of phytohormones (IAA, ABA, and cytokinines) on the induction of in vitro somatic embryogenesis in callus cultures of wheat, cultivar Bashkirskaya 26, barley, cultivar Steptoe, and its ABA-deficient mutant AZ34 has been studied. It was shown that the ability or inability for somatic embryogenesis in callus tissue of both wheat and barley is determined by the IAA : ABA ratio. However, the level of cytokinines was similar in both embryogenic and nonembryogenic calli of each object studied. The analysis of callus tissue of the ABA-deficient mutant AZ34 revealed the stimulating role of ABA not only in the induction of somatic embryogenesis but also in the formation of normal embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aguilar, M.L., Espadas, F.L., Coello, J., Maust, B.E., Trejo, C., Robert, M.L., and Santamaría, J.M., The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field, J. Exp. Bot., 2000, vol. 51, no. 352, pp. 1861–1866.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Khayri, J.M., Factors affecting somatic embryogenesis in date palm (Phoenix dactylifera L.), in Somatic Embryogenesis and Genetic Transformation in Plants, Junaid, A., Srivastava, P.S., and Sharma, M.P., Eds., New Delhi: Narosa Publishing House, 2013, pp. 15–37.

    Google Scholar 

  3. Al-Khayri, J.M. and Al-Bahrany, A.M., Effect of abscisic acid and polyethylene glycol on the synchronization of somatic embryo development in date palm (Phoenix dactylifera L.), Biotechnology, 2012, vol. 11, no. 6, pp. 318–325.

    Article  CAS  Google Scholar 

  4. Alwael, H.A., Naik, P.M., and Al-Khayri, J.M., Synchronization of somatic embryogenesis in date palm suspension culture using abscisic acid, in Date Palm Biotechnology Protocols, vol. I: Tissue Culture Applications, Methods Mol. Biol., 2017, vol. 1637, pp. 215–226.

    Article  CAS  PubMed  Google Scholar 

  5. Bespalhok, J.C. and Hattori, F.K., Friable embryogenic callus and somatic embryo formation from cotyledon explants of African marigold (Tagetes erecta L.), Plant Cell Rept., 1998, vol. 17, pp. 870–875.

    Article  CAS  Google Scholar 

  6. Besse, I., Verdeil, J.L., Duval, Y., Sotta, D., Maldiney, R., and Miginiac, E., Oil palm (Elaeis guineensis Jacq.) clonal fidelity: endogenous cytokinins and indoleacetic acid in embryogenic callus cultures, J. Exp. Bot., 1992, vol. 43, no. 252, pp. 983–989.

    Article  CAS  Google Scholar 

  7. Bronsema, F.B.F., van Oostveen, W.J.F., Prinsen, E., and van Lammeren, A.A.M., Distribution of [14C] dichlorophenoxyacetic acid in cultured zygotic embryos of Zea mays L, J. Plant Growth Regul., 1998, vol. 17, no. 2, pp. 81–88.

    Article  CAS  Google Scholar 

  8. Charrière, F., Sotta, B., Miginiac, E., and Hahne, G., Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels, Plant Physiol. Biochem., 1999, vol. 37, no. 10, pp. 751–757.

    Article  Google Scholar 

  9. Dolgikh, Y.I., Pustovoitova, T.N., and Zhdanova, N.E., Hormonal regulation of somatic embryogenesis on maize, in Phytohormones in Plant Biotechnology and Agriculture, Macháčková, I. and Romanov, G.A., Eds., Dordrecht: Springer, 2003, pp. 243–247.

    Google Scholar 

  10. Egorova, N.A., Some aspects of biotechnology of aromatic plants: induction of calluso- and morphogenesis and the use of somaclonal variability, Fiziol. Rast. Genet., 2014, vol. 46, no. 2, pp. 108–120.

    Google Scholar 

  11. Fukuda, H., Signals that control plant vascular cell differentiation, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 5, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda, H., Tracheary element differentiation, Plant Cell, 1997, vol. 9, no. 7, pp. 1147–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D.M., and Thorpe, T.A., Plant hormones and plant growth regulators in plant tissue culture, In Vitro Cell. Dev. Biol. Plant, 1996, vol. 32, no. 4, pp. 272–289.

    Article  CAS  Google Scholar 

  14. Hand, M.L., de Vries, S., and Koltunow, A.M., A comparison of in vitro and in vivo asexual embryogenesis, Methods Mol. Biol., 2016, vol. 1359, pp. 3–23.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen, H. and Grossmann, K., Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition, Plant Physiol., 2000, vol. 124, no. 11, pp. 1437–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horstman, A., Bemer, M., and Boutilier, K., A transcriptional view on somatic embryogenesis, Regeneration, 2017, vol. 4, no. 4, pp. 201–216.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ikeuchi, M., Sugimoto, K., and Iwase, A., Plant callus: mechanisms of induction and repression, Plant Cell, 2013, vol. 25, pp. 3159–3173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jimenez, V.M. and Thomas, C., Participation of plant hormones in determination and progression of somatic embryogenesis, in Somatic Embryogenesis, Mujib, A. and Samaj, J., Eds., Berlin: Springer-Verlag, 2006, pp. 103–118.

    Google Scholar 

  19. Jimenez, V.M., Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis, Plant Growth Regul., 2005, vol. 47, pp. 91–110.

    Article  CAS  Google Scholar 

  20. Jimenez, V.M., Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones, R. Brasil. Fisiol. Veg., 2001, vol. 13, pp. 196–223.

    Article  Google Scholar 

  21. Krikorian, A.D., Hormones in tissue culture and micropropagation, in Plant Hormones, Davies, P.J., Ed., Kluwer, 1995, pp. 774–796.

    Google Scholar 

  22. Kruglova, N.N. and Seldimirova, O.A., In vitro morphogenesis pathways of wheat androcline callus cells, Fiziol. Rast. Genet., 2013, vol. 45, no. 5, pp. 382–389.

    Google Scholar 

  23. Kruglova, N.N. and Seldimirova, O.A., Regeneratsiya pshenitsy in vitro i ex vitro: tsito-gistologicheskie aspekty (Wheat Regeneration in vitro and ex vitro: Cytohistological Aspects), Ufa: Gilem, 2011.

  24. Kruglova, N.N., Seldimirova, O.A., and Veselov, D.S., On the auxin involvement in the induction and regulation of morphogenetic callus in a model system in vitro (a case study of cereals), Biomika, 2017, vol. 9, no. 4, pp. 289–297.

    Google Scholar 

  25. Kruglova, N.N., Seldimirova, O.A., Zinatullina, A.E., and Veselov, D.S., Abscisic acid in vitro explant culture systems, Izv. Ufimsk. Nauchn. Tsentra Ross. Akad. Nauk, 2018a, no. 2, pp. 55–60.

  26. Kruglova, N.N., Seldimirova, O.A., Zinatullina, A.E., and Veselov, D.S., Involvement of abscisic acid in inducing somatic embryogenesis in plants in vitro, Usp. Sovrem. Biol., 2018b, vol. 138, no. 5, pp. 516–528.

    Google Scholar 

  27. Kruglova, N.N., Titova, G.E., and Seldimirova, O.A., Callusogenesis as an in vitro morphogenesis pathway in cereals, Russ. J. Dev. Biol., 2018c, vol. 49, no. 5, pp. 245–259.

    Article  Google Scholar 

  28. Kudoyarova, G.R., Korobova, A.V., Akhiyarova, G.R., Arkhipova, T.N., Zaytsev, D.Yu., Prinsen, E., Egutkin, N.L., Medvedev, S.S., and Veselov, S.Yu., Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), J. Exp. Bot., 2014, vol. 65, pp. 2287–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kudoyarova, G.R., Veselov, D.S., Sharipova, G.V., Akhiyarova, G.R., Dodd, I.C., and Veselov, S.Yu., Water relations and growth of original barley plants and its ABA-deficient mutants at increased air temperature, Russ. J. Plant Physiol., 2014, vol. 61, no. 2, pp. 188–193.

    Article  CAS  Google Scholar 

  30. Kudoyarova, G.R., Veselov, S.Yu., Karavaiko, N.N., Gyuli-Zade, V.Z., Cheredova, E.P., Mustafina, A.R., Moshkov, I.E., and Kulaeva, O.N., Enzyme immunoassay test system for the determination of cytokinins, Fiziol. Rast., 1990, vol. 37, no. 1, pp. 193–199.

    CAS  Google Scholar 

  31. Kudoyarova, G.R., Vysotskaya, L.B., Cherkozyanova, A., and Dodd, I.C., Effect of partial rootzone drying on the concentration of zeatin type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves, J. Exp. Bot., 2007, vol. 58, pp. 161–168.

    Article  CAS  PubMed  Google Scholar 

  32. Lema-Ruminska, J., Goncerzewicz, K., and Gabriel, M., Influence of abscisic acid and sucrose on somatic embryogenesis in cactus Eopiapoa tenuissima Ritt. forma mostruosa, Sci. World J., 2013, vol. 2013, article ID 513985. https://doi.org/10.1155/2013/513985

    Article  CAS  Google Scholar 

  33. Mauri, P.V. and Manzanera, J.A., Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.), In vitro Cell. Dev. Biol. Plant, 2004, vol. 40, no. 5, pp. 495–498.

    Article  CAS  Google Scholar 

  34. Medvedev, S.S. and Sharova, E.I., Biologiya razvitiya rastenii. V 2-kh t. T. 1. Nachala biologii razvitiya rastenii. Fitogormony (Plant Developmental Biology, in 2 vols., vol. 1: Basics of Plant Developmental Biology. Phytohormones), St. Petersburg: Izd-vo S.-Peterb. un-ta, 2011.

  35. Michalczuk, L., Ribnicky, D.M., Cooke, T.J., and Cohen, J.D., Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell, Plant Physiol., 1992, vol. 100, no. 3, pp. 1346–1353.

  36. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  37. Nic-Can, G.I. and Loyola-Vargas, V.M., The role of the auxins during somatic embryogenesis, in Somatic Embryogenesis: Fundamental Aspects and Applications, Loyola-Vargas, V. and Ochoa-Alejo, N., Eds., Cham: Springer, 2016, pp. 171–182.

    Google Scholar 

  38. Nishiwaki, M., Fujino, K., Koda, Y., Masuda, K., and Kikuta, Y., Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture, Planta, 2000, vol. 211, no. 5, pp. 756–759.

    Article  CAS  PubMed  Google Scholar 

  39. Ochatt, S. and Revilla, M., From stress to embryos: some of the problems for induction and maturation of somatic embryos, in In Vitro Embryogenesis in Higher Plants, Germana, M.A. and Lambardi, M., Eds., New York: Springer, 2016, pp. 523–536.

    Google Scholar 

  40. Ot mikrospory k sortu (From Microspore to Cultivar), Batygina, T.B., Kruglova, N.N., Gorbunova, V.Yu., Titova, G.E., and Sel’dimirova, O.A., Eds., Moscow: Nauka, 2010.

  41. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F., and Cutler, S.R., Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins, Science, 2009, vol. 324, pp. 1068–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Phytohormones and Abiotic Stress Tolerance in Plants, Khan, N.A., Nazar, R., Iqbal, N., and Anjum, N.A., Eds., Luxembourg: Springer, 2012.

    Google Scholar 

  43. Plant Tissue Culture: An Introductory Text, Bhojwani, S.S. and Dantu, P.K., Eds., India: Springer, 2013, pp. 31–33.

    Google Scholar 

  44. Rai, M.K., Jaiswal, V.S., and Jaiswal, U., Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.), Sci. Hortic., 2008, vol. 117, pp. 302–305.

    Article  CAS  Google Scholar 

  45. Rai, M.K., Shekhawat, N.S., Harish Gupta, A.K., Phulwaria, M., Ram, K., and Jaiswal, U., The role of abscisic acid in plant tissue culture: a review of recent progress, Plant Cell Tiss. Org. Cult., 2011, vol. 106, no. 2, pp. 179–190.

    Article  CAS  Google Scholar 

  46. Ribnicky, D.M., Ilic, N., Cohen, J.D., and Cooke, T.J., The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism (the implications for carrot somatic embryogenesis), Plant Physiol., 1996, vol. 112, pp. 549–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seldimirova, O.A. and Kruglova, N.N., The balance of endogenous and exogenous hormones and the pathways of morphogenesis in wheat androcline calli in vitro, Izv. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2015, no. 1, pp. 33–39.

  48. Seldimirova, O.A., Kruglova, N.N., Veselov, D.S., and Yanovskaya, A.A., Optimization of culture medium for the induction of callus in barley cv. Steptoe and ABA-deficient mutant AZ34, Biomika, 2017, vol. 9, no. 4, pp. 298–303.

    Google Scholar 

  49. Seldimirova, O.A., Kudoyarova, G.R., Kruglova, N.N., Zaytsev, D.Yu., and Veselov, S.Yu., Changes in distribution of cytokinins and auxins in cell during callus induction and organogenesis in vitro in immature embryo culture of wheat, In Vitro Cell Dev. Biol. Plant, 2016a, vol. 52, no. 3, pp. 251–264.

    Article  CAS  Google Scholar 

  50. Seldimirova, O.A., Zaytsev, D.Yu., Galin, I.R., and Kruglova, N.N., Phytohormonal regulation of in vitro formation of wheat androgenic structures, Nauchn. Rezul’t. Ser. Fiziol., 2016b, vol. 2, no. 1 (7), pp. 3–8.

  51. Sharma, P., Pandey, S., Bhattacharya, A., Nagar, P.K., and Ahuja, P.S., ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze, J. Plant Physiol., 2004, vol. 161, no. 11, pp. 1269–1276.

    Article  CAS  PubMed  Google Scholar 

  52. Sholi, N., Chaurasia, A., Agrawal, A., et al., ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.), Plant Cell Tiss. Org. Cult., 2000, vol. 9, pp. 133–140.

    Google Scholar 

  53. Shvetsov, S.G. and Enikeev, A.G., Absorption and secretion of 2,4-dichlorophenoxyacetic acid by soybean cells in suspension culture, Fiziol. Biokhim. Kul’t. Rast., 2009, vol. 41, no. 4, pp. 359–363.

    CAS  Google Scholar 

  54. Somatic Embryogenesis: Fundamental Aspects and Applications, Loyola-Vargas, V. and Ochoa-Alejo, N., Eds., Springer, Cham, 2016.

  55. Song, Y., Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-d) as an herbicide, J. Integr. Plant Biol., 2014, vol. 56, no. 2, pp. 106–113.

    Article  CAS  PubMed  Google Scholar 

  56. Souza, J.M.M., Tomaz, M.L., Arruda, S.C.C., Demé-trio, C.G.B., Venables, W.N., and Martinelli, A.P., Callus sieving is effective in improving synchronization and frequency of somatic embryogenesis in Citrus sinensis, Biol. Plant., 2011, vol. 55, pp. 703–707.

    Article  Google Scholar 

  57. Stasolla, C. and Yeung, E.C., Recent advances in conifer somatic embryogenesis: improving somatic embryo quality, Plant Cell Tiss. Org. Cult., 2003, vol. 74, pp. 15–35.

    Article  CAS  Google Scholar 

  58. Stasolla, C., Kong, L., Yeung, E.C., and Thorpe, T.A., Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology, In Vitro Cell. Dev. Biol. Plant, 2002, vol. 38, no. 2, pp. 93–105.

    Article  CAS  Google Scholar 

  59. Sugiyama, M., Historical review of research on plant cell dedifferentiation, J. Plant Res., 2015, vol. 128, no. 5, pp. 349–359.

    Article  CAS  PubMed  Google Scholar 

  60. Svetovoi mikroskop kak instrument v biotekhnologii rastenii (Light Microscope as a Tool in Plant Biotechnology), Kruglova, N.N., Egorova, O.V., Sel’dimirova, O.A., Zaitsev, D.Yu., and Zinatullina, A.E., Eds., Ufa: Gilem, Bashk. Entsikl., 2013.

    Google Scholar 

  61. Tret’yakova, I.N. and Barsukova, A.V., Somatic embryogenesis in in vitro culture of three larch species, Russ. J. Dev. Biol., 2012, vol. 43, no. 6, pp. 353–361.

    Article  Google Scholar 

  62. Tuteja, N., Abscisic acid and abiotic stress signaling, Plant Signal. Behav., 2007, vol. 2, pp. 135–138.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vales, T., Feng, X., Ge, L., Xu, N., Cairney, J., Pullman, G., and Peter, G., Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression, Plant Cell Rep., 2007, vol. 26, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

  64. Veselov, D.S., Sharipova, G.R., Veselov, S.Yu., Dodd, I.C., Ivanov, I.I., and Kudoyarova, G.R., Rapid changes in root HvPIP2;2 aquaporins abundance and aba concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand, Funct. Plant Biol., 2018, vol. 45, pp. 143–149.

    Article  CAS  PubMed  Google Scholar 

  65. Veselov, S., Kudoyarova, G., Egutkin, N., Gyuli-Zade, V., Mustafma, A., and Kof, E., Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid, Physiol. Plant., 1992, vol. 86, pp. 93–96.

    Article  CAS  Google Scholar 

  66. Von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., and Filonova, L., Developmental pathways of somatic embryogenesis, Plant Cell Tiss. Org. Cult., 2002, vol. 69, no. 3, pp. 233–249.

    Article  CAS  Google Scholar 

  67. Vysotskaya, L.B., Korobova, A.V., and Kudoyarova, G.R., Abscisic acid accumulation in the roots of nutrient-limited plants: its impact on the differential growth of roots and shoots, J. Plant Physiol., 2008, vol. 165, pp. 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  68. Vysotskaya, L.B., Korobova, A.V., Veselov, S.Yu., Dodd, I.C., and Kudoyarova, G.R., ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat, Funct. Plant Biol., 2009, vol. 36, no. 1, pp. 66–72.

    Article  CAS  PubMed  Google Scholar 

  69. Winkelmann, T., Somatic versus zygotic embryogenesis: learning from seeds, Methods Mol. Biol., 2016, vol. 1359, pp. 25–46.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, S., Han, S., Yang, W., Wei, H., Zhang, M., and Qi, L., Changes in H2O2 content and antioxidant enzyme gene expression during somatic embryogenesis of Larix leptolepis, Plant Cell Tiss. Org. Cult., 2010, vol. 100, pp. 21–29.

    Article  CAS  Google Scholar 

  71. Zhou, X., Zheng, R., Liu, G., Xu, Y., Zhou, Y., Laux, T., Zhen, Y., Harding, S.A., Shi, J., and Chen, J., Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) hook, Front. Plant Sci., 2017, vol. 8, p. 2054. https://doi.org/10.3389/fpls.2017.02054

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Seldimirova.

Additional information

Translated by Mikhail Bibov

Abbreviations: ABA—abscisic acid; 2,4-D—dichlorophenoxyacetic acid; IAA—indole-3-acetic acid; LM—light microscopy; MSO—Murashige and Skoog medium; 6-BAP—6-benzylaminopurine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seldimirova, O.A., Kudoyarova, G.R., Kruglova, N.N. et al. Somatic Embryogenesis in Wheat and Barley Calli in vitro Is Determined by the Level of Indoleacetic and Abscisic Acids. Russ J Dev Biol 50, 124–135 (2019). https://doi.org/10.1134/S1062360419030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360419030056

Keywords:

Navigation