Skip to main content
Log in

Comparative Analysis of Embryonic Inversion in Algae of the Genus Volvox (Volvocales, Chlorophyta)

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Recent literary data on inversion (turning inside out) in the embryos of flagellated algae of the genus Volvox are critically analyzed. In this process, active changes in the shape of embryonic cells and the displacement of intercellular cytoplasmic bridges play an important role. After inversion, the flagella appear on the outer side of the young colony and provide its motility. Within the genus Volvox, two main modes of embryo inversion have been recently established during the asexual developmental cycle—inversion of type A and inversion of type B—represented by the two species most thoroughly studied, respectively, Volvox carterif. nagariensis and V. globator. However, the published opinion that the inversion of V. aureus embryos is of the type B seems to be doubtful. Comparative and evolutionary aspects of embryonic inversion in Volvox are discussed with the use of data on other genera of colonial volvocine algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Darden, W.H., Sexual differentiation in Volvox aureus, J. Protozool., 1966, vol. 13, pp. 239–255.

    Article  PubMed  Google Scholar 

  • Desnitskiy, A.G., Ontogenetic diversity of colonies and intercellular cytoplasmic bridges in the algae of the genus Volvox, Russ. J. Dev. Biol., 2014, vol. 45, pp. 231–234.

    Article  CAS  Google Scholar 

  • Desnitskiy, A.G., Major ontogenetic transitions during Volvox (Chlorophyta) evolution: when and where might they have occurred?, Dev. Genes Evol., 2016, vol. 226, pp. 349–354.

    Article  PubMed  Google Scholar 

  • Desnitskiy, A.G., Differentiation of reproductive structures and experimental sex change in Volvox (Chlorophyta, Volvocaceae), Int. J. Plant Reprod. Biol., 2017, vol. 9, pp. 63–68.

    Google Scholar 

  • Dondua, A.K. and Kostyuchenko, R.P., Concerning one obsolete tradition: does gastrulation in sponges exist?, Russ. J. Dev. Biol., 2013, vol. 44, pp. 267–272.

    Article  Google Scholar 

  • Ereskovsky, A.V., The Comparative Embryology of Sponges, Dordrecht (the Netherlands): Springer, 2010.

    Book  Google Scholar 

  • Ettl, H., Chlorophyta. 1. Phytomonadina, Stuttgart: Gustav Fischer, 1983.

    Google Scholar 

  • Fortunato, S., Adamski, M., Bergum, B., et al., Genomewide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns, EvoDevo, 2012, vol. 3: 14. doi 10.1186/2041-9139-3-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulton, A.B., Colonial development in Pandorina morum. II. Colony morphogenesis and formation of the extracellular matrix, Dev. Biol., 1978, vol. 64, pp. 236–251.

    Article  PubMed  CAS  Google Scholar 

  • Haas, P.A. and Goldstein, R.E., Elasticity and glocality: initiation of embryonic inversion in Volvox, J. Roy. Soc. Interface, 2015, vol. 12: 20150671. doi 10.1098/rsif.2015.0671

    Article  Google Scholar 

  • Hallmann, A., Morphogenesis in the family Volvocaceae: different tactics for turning an embryo right-side out, Protist, 2006, vol. 157, pp. 445–461.

    Article  PubMed  Google Scholar 

  • Herron, M.D. and Nedelcu, A.M., Volvocine algae: from simple to complex multicellularity, in Evolutionary Transitions to Multicellular Life, Ruiz-Trillo, I. and Nedelcu, A.M., Eds., Dordrecht (the Netherlands): Springer, 2015, pp. 129–152.

    Google Scholar 

  • Herron, M.D., Desnitskiy, A.G., and Michod, R.E., Evolution of developmental programs in Volvox (Chlorophyta), J. Phycol., 2010, vol. 46, pp. 316–324.

    Article  Google Scholar 

  • Höhn, S. and Hallmann, A., There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator, BMC Biol., 2011, vol. 9: 89. doi 10.1186/1741-7007-9-89

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhn, S. and Hallmann, A., Distinct shape-shifting regimes of bowl-shaped cell sheets—embryonic inversion in the multicellular green alga Pleodorina, BMC Dev. Biol., 2016, vol. 16: 35. doi 10.1186/s12861-016-0134-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhn, S., Honerkamp-Smith, A.R., Haas, P.A., et al., Dynamics of a Volvox embryo turning itself inside out, Phys. Rev. Lett., 2015, vol. 114: 178101. doi 10.1103/PhysRevLett.114.178101

    Article  PubMed  CAS  Google Scholar 

  • Hoops, H.J., Nishii, I., and Kirk, D.L., Cytoplasmic bridges in Volvox and its relatives, in Cell–Cell Channels, Baluska, F., Volkmann, D., and Barlow, P., Eds., Georgetown (Texas): Landes Bioscience, 2006, pp. 65–84.

    Chapter  Google Scholar 

  • Iida, H., Nishii, I., and Inouye, I., Embryogenesis and cell positioning in Platydorina caudata (Volvocaceae, Chlorophyta), Phycologia, 2011, vol. 50, pp. 530–540.

    Article  Google Scholar 

  • Iida, H., Ota, S., and Inouye, I., Cleavage, incomplete inversion, and cytoplasmic bridges in Gonium pectorale (Volvocales, Chlorophyta), J. Plant Res., 2013, vol. 126, pp. 699–707.

    Article  PubMed  CAS  Google Scholar 

  • Ireland, G.W. and Hawkins, S.E., Inversion in Volvox tertius: the effects of conA, J. Cell Sci., 1981, vol. 48, pp. 355–366.

    PubMed  CAS  Google Scholar 

  • Ivanov, A.V., On the reasons of excurvation of the embryo in the colonial Phytomonadina and calcareous sponges, Monitore Zool. Ital., 1971, vol. 5, pp. 1–10.

    Google Scholar 

  • Janet, C., Le Volvox. Troisième mémoire. Ontogénèse de la blastéa volvocéenne, Mâcon (France): Protat Frères, 1923.

    Google Scholar 

  • Kelland, J.L., Inversion in Volvox (Chlorophyceae), J. Phycol., 1977, vol. 13, pp. 373–378.

    Google Scholar 

  • Keller, R. and Shook, D., The bending of cell sheets—from folding to rolling, BMC Biol., 2011, vol. 9: 90. doi 10.1186/1741-7007-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirk, D.L., Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation, New York: Cambridge Univ. Press, 1998.

    Google Scholar 

  • Kirk, D.L. and Nishii, I., Volvox carteri as a model for studying the genetic and cytological control of morphogenesis, Dev. Growth Differ., 2001, vol. 43, pp. 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Kuschakewitsch, S., Zur Kenntnis der Entwicklungsgeschichte von Volvox, Arch. Protistenkd., 1931, vol. 73, pp. 323–330.

    Google Scholar 

  • Lanna, E. and Klautau, M., Embryogenesis and larval ultrastructure in Paraleucilla magna (Calcarea, Calcaronea), with remarks on the epilarval trophocyte epithelium (“placental membrane”), Zoomorphology, 2012, vol. 131, pp. 277–292.

    Article  Google Scholar 

  • Marchant, H.J., Colony formation and inversion in the green alga Eudorina elegans, Protoplasma, 1977, vol. 93, pp. 325–339.

    Article  Google Scholar 

  • Matt, G. and Umen, J., Volvox: a simple algal model for embryogenesis, morphogenesis and cellular differentiation, Dev. Biol., 2016, vol. 419, pp. 99–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCracken, M.D. and Starr, R.C., Induction and development of reproductive cells in the K-32 strains of Volvox rousseletii, Arch. Protistenkd., 1970, vol. 112, pp. 262–282.

    Google Scholar 

  • Nishii, I. and Ogihara, S., Actomyosin contraction of the posterior hemisphere is required for inversion of the Volvox embryo, Development, 1999, vol. 126, pp. 2117–2127.

    PubMed  CAS  Google Scholar 

  • Nishii, I., Ogihara, S., and Kirk, D.L., A kinesin, invA, plays an essential role in Volvox morphogenesis, Cell, 2003, vol. 113, pp. 743–753.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki, H., Matsuzaki, R., Yamamoto, K., et al., Delineating a new heterothallic species of Volvox (Volvocaceae, Chlorophyceae) using new strains of “Volvox africanus,” PLoS One, 2015, vol. 10 (11): e0142632. doi 10.1371/journal.pone.0142632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamura, B. and Gruhl, A., Myxozoa + Polypodium: a common route to endoparasitism, Trends Parasitol., 2016, vol. 32, pp. 268–271.

    Article  PubMed  Google Scholar 

  • Pickett-Heaps, J.D., Some ultrastructural features of Volvox, with particular reference to the phenomenon of inversion, Planta, 1970, vol. 90, pp. 174–190.

    Article  PubMed  CAS  Google Scholar 

  • Pocock, M.A., Volvox and associated algae from Kimberley, Ann. South Afr. Mus., 1933a, vol. 16, no. 3, pp. 473–521.

    Google Scholar 

  • Pocock, M.A., Volvox in South Africa, Ann. South Afr. Mus., 1933b, vol. 16, no. 3, pp. 523–646.

    Google Scholar 

  • Powers, J.H., Further studies in Volvox, with descriptions of three new species, Trans. Amer. Microsc. Soc., 1908, vol. 28, pp. 141–175.

    Article  Google Scholar 

  • Raikova, E.V., Life cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of acipenseriform fishes, J. Parasitol., 1994, vol. 80, pp. 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, D.E., Desnitskiy, A.G., and Michod, R.E., Distribution of reproductive and somatic cell numbers in diverse Volvox (Chlorophyta) species, Evol. Ecol. Res., 2012, vol. 14, pp. 707–721.

    PubMed  PubMed Central  Google Scholar 

  • Ueki, N. and Nishii, I., Controlled enlargement of the glycoprotein vesicle surrounding a Volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis, Plant Cell, 2009, vol. 21, pp. 1166–1181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umen, J.G. and Olson, B.J., Genomics of volvocine algae, Adv. Bot. Res., 2012, vol. 64, pp. 185–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viamontes, G.I. and Kirk, D.L., Cell shape changes and the mechanism of inversion in Volvox, J. Cell Biol., 1977, vol. 75, pp. 719–730.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, S., Arakaki, Y., Kawai-Toyooka, H., et al., Alternative evolution of a spheroidal colony in volvocine algae: developmental analysis of embryogenesis in Astrephomene (Volvocales, Chlorophyta), BMC Evol. Biol., 2016, vol. 16, no. 1, p. 243. doi 10.1186/s12862-016-0794-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, W., Die ungeschlechtliche Entwicklung von Volvox, Naturwissenschaften, 1925, vol. 19, pp. 397–402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Desnitskiy.

Additional information

Original Russian Text © A.G. Desnitskiy, 2018, published in Ontogenez, 2018, Vol. 49, No. 3.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desnitskiy, A.G. Comparative Analysis of Embryonic Inversion in Algae of the Genus Volvox (Volvocales, Chlorophyta). Russ J Dev Biol 49, 129–133 (2018). https://doi.org/10.1134/S1062360418030025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418030025

Keywords

Navigation