Russian Journal of Developmental Biology

, Volume 49, Issue 2, pp 61–78 | Cite as

The Role of Transposons in Epigenetic Regulation of Ontogenesis

  • R. N. Mustafin
  • E. K. Khusnutdinova


A new insight into the mechanisms underlying implementation of genomic information in the individual development of eukaryotes through interactions of transposons with epigenetic factors dynamically changing during each cell division is described. These mechanisms of stepwise implementation of individual genetic information with characteristic stage- and tissue-specific features in the activities of certain mobile genetic element families are evolutionarily fixed at the species level. In addition, the individual differences caused by their “unscheduled” transpositions can significantly change the regulatory network of the genome altering the phenotype. These changes in individual development can bring about new traits leading to either a disease or better fitness and represent an important component of the variation for natural selection in evolution. A large part of the eukaryotic transposons is altered by mutations and used for formation of the regulatory gene network, changes in the protein-coding genes, and emergence of new nonprotein-coding genes. When inserted into new loci, mobile genetic elements form the basis for microRNA and the domain structures of long noncoding RNA, responding to various types of stress; this is reflected in the specific features of individual development and contributes to variation. The epigenetic factors, including noncoding RNA, DNA methylation, and histone modifications, are tightly associated with mobile genetic elements. The specific features in transposon location in individuals that have emerged owing to spontaneous mutations or those caused by stress impacts can considerably change the interactions in gene networks. This influences the likelihood of survival under changing environmental conditions and reflects a distinct interrelation between the mechanisms of individual development and evolution. There is a parallelism between the mechanisms underlying the rearrangements of genomes caused by transposons in evolution and in individual development. In particular, the responsiveness of transposons to external and internal (microenvironment) factors forms the background for evolutionary construction of transposon-mediated tissue-specific activation patterns of certain transposons during each cell division, which leads to maturation of a reproductive organism. This mechanism is based on tight stage- and tissuespecific interrelation between transposons, epigenetic factors, and protein-coding genes.


long noncoding RNA microRNA (miR) methylation mobile genetic elements histone modification nucleotide sequences environment repetitive elements transposons repeat-derived miR (RdmiR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskaev, K.K. and Buzdin, A.A., Evolutionarily recent groups of transposable elements in the human genome, Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 6, pp. 524–531.CrossRefGoogle Scholar
  2. Belancio, V.P., Roy-Engel, A.M., and Deininger, P.L., All y’all need to know about retroelements in cancer, Semin. Cancer Biol., 2010, vol. 20, no. 4, pp. 200–210.PubMedPubMedCentralCrossRefGoogle Scholar
  3. De Berardinis, R.J., Goodier, J.L., Ostertag, E.M., and Kazazian, H.H., Rapid amplification of a retrotransposons subfamily is evolving the mouse genome, Nat. Genet., 1998, vol. 20, no. 3, pp. 288–290.CrossRefGoogle Scholar
  4. Borchert, G.M., Holton, N.W., Williams, J.D., et al., Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins, Mobile Genetic Elements, 2011, vol. 1, pp. 8–17.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Burns, K.H. and Boeke, J.D., Human transposon Tictonics, Cell, 2012, vol. 149, no. 4, pp. 740–752.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cacabelos, R. and Torrellas, C., Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response, Int. J. Mol. Sci., 2015, vol. 16, pp. 30482–30543.CrossRefGoogle Scholar
  7. Cartault, F., Munier, P., Benko, E., et al., Mutation in a primate-conserved retrotransposons reveals a noncoding RNA as a mediator of infantile encephalopathy, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 13, pp. 4980–4985.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Castellano, L., Rizzi, E., Krell, J., et al., The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs and 29-nt small RNAs, BMC Genomics, 2015, vol. 16, no. 1, pp. 100–106.PubMedGoogle Scholar
  9. Cheresiz, S.V., Yurchenko, N.N., Ivannikov, A.V., and Zakharov, I.K., Mobile elements and stress, Vestnik VOGiS, 2008, vol. 12, nos. 1/2, pp. 216–241.Google Scholar
  10. Cornelis, G., Vernochet, C., Carradec, Q., et al., Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 5, pp. 487–496.CrossRefGoogle Scholar
  11. Cote, G.J., Zhu, W., Thomas, A., et al., Hydrogen peroxide alters splicing of soluble guanylyl cyclase and selectively modulates expression of splicing regulators in human cancer cells, PLoS One, 2012, vol. 7, no. 7, p. e41099.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Coufal, N.G., Garcia-Perez, J.L., Peng, G.E., et al., L1 retrotransposition in human neural progenitor cells, Nature, 2009, vol. 460, no. 7259, pp. 1127–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cui, F., Sirotin, M.V., and Zhurkin, V.B., Impact of Alu repeats on the evolution of human p53 binding sites, Biol. Direct., 2011, vol. 6, pp. 2–22.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Devor, E.J., Peek, A.S., Lanier, W., et al., Marsupial-specific microRNAs evolved from marsupial-specific transposable elements, Gene, 2009, vol. 448, no. 2, pp. 187–191.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dimmeler, S. and Nicotera, P., microRNAs in age-related diseases, EMBO Mol. Med., 2013, vol. 5, no. 2, pp. 180–190.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Du, Z., Yang, C., Rothschild, M.F., and Ross, J., Novel microRNA families expanded in the human genome, BMC Genomics, 2013, vol. 14, pp. 98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Duan, C.G., Wang, X., Pan, L., et al., A pair of transposonderived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell. Res., 2017, vol. 27, no. 2, pp. 226–240.PubMedCrossRefGoogle Scholar
  18. Dupressoir, A., Lavialle, C., and Heidmann, T., From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 2012, vol. 33, no. 9, pp. 663–671.PubMedCrossRefGoogle Scholar
  19. Edlefsen, P.T. and Liu, J.S., Transposon identification using profile HMMs, BMC Genomics, 2010, vol. 11, p. 10.CrossRefGoogle Scholar
  20. Farmer, C., Cox, J., and Fletcher, E., Splice variants of Nav1.7 sodium channels have distinct beta subunitdependent biophysical properties, PLoS One, 2012, vol. 7, no. 7, p. e41750.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Faulkner, G.J., Retrotransposons: mobile and mutagenic from conception to death, FEBS Lett., 2011, vol. 585, no. 11, pp. 1589–1594.PubMedCrossRefGoogle Scholar
  22. Feschotte, C., The contribution of transposable elements to the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Filshtein, T.J., Mackenzie, C.O., Dale, M.D., et al., Origin- based identification of microRNA targets, Mobile Genetic Elements, 2011, vol. 2, no. 3, pp. 184–192.Google Scholar
  24. Finatto, T., de Oliveira, A., Chaparro, C., et al., Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice, Rice, 2015, vol. 8, no. 13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fu, A., Jacobs, D.I., and Zhu, Y., Epigenome-wide analysis of piRNAs in gene-specific DNA methylation, RNA Biol., 2014, vol. 11, no. 10, pp. 1301–1312.PubMedCrossRefGoogle Scholar
  26. Garcia-Perez, J.L., Marchetto, M.C., Muotri, A.R., et al., Line-1 retrotransposition in human embryonic stem cells, Hum. Mol. Genet., 2007, vol. 16, no. 13, pp. 1569–1577.PubMedCrossRefGoogle Scholar
  27. Gim, J., Ha, H., Ahn, K., et al., Genome-wide identification and classification of microRNAs derived from repetitive elements, Genomic Inform., 2014, vol. 12, no. 4, pp. 261–267.CrossRefGoogle Scholar
  28. Glazko, V.I., Problems of “marker-assisted selection,” Genetika, 2013, no. 2, pp. 16–22.Google Scholar
  29. Guo, W., Zhang, M.Q., and Wu, H., Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements, Sci. Rep., 2016, vol. 6, pp. 32207–32219.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hadjiargyrou, M. and Delihas, N., The intertwining of transposable elements and non-coding RNAs, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 13307–13328.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Han, J.S. and Boeke, J.D., A highly active synthetic mammalian retrotransposons, Nature, 2004, vol. 429, no. 6989, pp. 314–318.PubMedCrossRefGoogle Scholar
  32. Huang, W., Tsai, L., Li, Y., et al., Widespread of horizontal gene transfer in the human genome, BMC Genomics, 2017, vol. 18, pp. 274–285.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Van den Hurk, J.A., Meij, I.C., and Seleme, M.C., L1 retrotransposition can occur early in human embryonic development, Hum. Mol. Genet., 2007, vol. 16, no. 13, pp. 1587–1592.PubMedCrossRefGoogle Scholar
  34. Jjingo, D., Conley, A., Wang, J., et al., Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression, Mobile DNA, 2014, vol. 5, pp. 14–25.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959–976.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kalsotra, A. and Cooper, T.A., Functional consequences of developmentally regulated alternative splicing, Nat. Rev. Genet, 2012, vol. 10, pp. 715–729.Google Scholar
  37. Khowutthitham, S., Ngamphiw, C., Wanichnopparat, W., et al., Intragenic long interspersed element-1 sequences promote promoter hypermethylation in lung adenocarcinoma, multiple myeloma and prostate cancer, Genes Genomics, 2012, vol. 34, no. 5, pp. 517–528.Google Scholar
  38. Kiselev, O.I., Endogenous retroviruses: structure and function in the human genome, Vopr. Virusol., 2013, no. 1, pp. 102–115.Google Scholar
  39. Kitkumthorn, N. and Mutirangura, A., Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications, Clin. Epigenet., 2011, vol. 2, pp. 315–330.CrossRefGoogle Scholar
  40. Klawitter, S., Fuchs, N.V., Upton, K.R., et al., Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells, Nat. Commun., 2016, vol. 7, pp. 10286–10301.PubMedPubMedCentralCrossRefGoogle Scholar
  41. De Koning, A.P., Gu, W., Castoe, T.A., et al., Repetitive elements may comprise over two-thirds of the human genome, PLoS Genetics, 2011, vol. 7, no. 12, p. e1002384.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kralovicova, J., Patel, A., Searle, M., and Vorechovsky, I., The role of short RNA loops in recognition of a singlehairpin exon derived from a mammalian-wide interspersed repeat, RNA Biol., 2015, vol. 12, no. 1, pp. 54–69.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kubo, S., Seleme, M.C., Soifer, H.S., et al., L1 retrotransposition in non-dividing and primary human somatic cells, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 8036–8041.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kurnosov, A.A., Activity of retroelements in neuronal tissues of an adult organism, Cand. Sci. (Biol.) Dissertation, Moscow, 2015.Google Scholar
  45. Le, T.N., Miyazaki, Y., Takuno, S., et al., Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana, Nucleic Acids Res., 2015, vol. 43, no. 8, pp. 3911–3921.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lee, K.H., Chiu, S., Lee, Y.K., et al., Age-dependent and tissue-specific structural changes in the C57BL/6J mouse genome, Exp. Mol. Pathol, 2012, vol. 93, no. 1, pp. 167–172.PubMedCrossRefGoogle Scholar
  47. Lee, K.H., Yee, L., Lim, D., et al., Temporal and spatial rearrangements of a repetitive element array on C57BL/6J mouse genome, Exp. Mol. Pathol., 2015, vol. 98, no. 3, pp. 439–445.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lippman, Z., May, B., Yordan, C., et al., Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification, PLoS Biol., 2003, vol. 1, no. 3, pp. 420–428.CrossRefGoogle Scholar
  49. Liu, N., Landreh, M., Cao, K., et al., The microRNA miR-34 modulates ageing and neurodegeneration in drosophila, Nature, 2012, vol. 482, no. 7386, pp. 519–523.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lu, D., Davis, M.P., Abreu-Goodger, C., et al., MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogram ming of mouse fibroblast cells to iPSCs, PLoS One, 2012, vol. 7, no. 8, p. e40938.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lukash, L.L., Mutagenesis induced by integration processes and evolution of nuclear genome, Biopolym. Cell, 2007, vol. 23, no. 3, pp. 172–187.CrossRefGoogle Scholar
  52. Macia, A., Munoz-Lopez, M., Cortes, J.L., et al., Epigenetic control of retrotransposons expression in human embryonic stem cells, Mol. Cell. Biol., 2011, vol. 31, no. 2, pp. 300–316.PubMedCrossRefGoogle Scholar
  53. Marchetto, M.C., Narvaiza, I., Denli, A.M., et al., Differential L1 regulation in pluripotent stem cells of humans and apes, Nature, 2013, vol. 503, no. 7477, pp. 525–529.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mason, C.E., Shu, F.J., Wang, C., et al., Location analysis for the estrogen receptor-alpha reveals binding to diverse ere sequences and widespread binding within repetitive DNA elements, Nucleic Acids Res., 2010, vol. 38, no. 7, pp. 2355–2368.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Masuta, Y., Nozawa, K., Takagi, H., et al., Inducible transposition of a heat-activated retrotransposon in tissue culture, Plant Cell Physiol., 2017, vol. 58, no. 2, pp. 375–384.PubMedGoogle Scholar
  56. Matylla-Kulinska, K., Tafer, H., Weiss, A., and Schroeder, R., Functional repeat-derived RNAs often originate from retrotransposon-propagated ncRNAs, Wiley Interdiscip. Rev. RNA, 2014, vol. 5, no. 5, pp. 591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  57. McClintock, B., The significance of responses of the genome to challenge, Science, 1984, vol. 226, no. 4676, pp. 792–801.PubMedCrossRefGoogle Scholar
  58. Moran, J.V., Holmes, S.E., Naas, T.P., et al., High frequency retrotransposition in cultured mammalian cells, Cell, 1996, vol. 87, pp. 917–927.PubMedCrossRefGoogle Scholar
  59. Morita, S., Horii, T., Kimura, M., et al., MiR-29 represses the activities of DNA methyltransferases and DNA demethylases, Int. J. Mol. Sci., 2013, vol. 14, pp. 14647–14658.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Morrish, T.A., Gilbert, N., Myers, J.S., et al., DNA repair mediated by endonuclease-independent line-1 retrotransposition, Nat. Genet., 2002, vol. 31, pp. 159–165.PubMedCrossRefGoogle Scholar
  61. Muotri, A.R., Chu, V.T., Marchetto, M.C., et al., Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, 2005, vol. 435, no. 7044, pp. 903–910.PubMedCrossRefGoogle Scholar
  62. Nali, L.H., Oliveira, A.C., Alves, D.O., et al., Expression of human endogenous retrovirus k and w in babies, Arch. Virol., 2017, vol. 162, no. 3, pp. 857–861.PubMedCrossRefGoogle Scholar
  63. Nishihara, H., Smit, A., and Okada, N., Functional noncoding sequences derived from SINEs in the mammalian genome, Genome Res., 2006, vol. 16, no. 7, pp. 864–874.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nozawa, M., Miura, S., and Nei, M., Origins and evolution of microRNA genes in drosophila species, Genome Biol. Evol., 2010, vol. 2, pp. 180–189.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nozawa, M., Miura, S., and Nei, M., Origins and evolution of microRNA genes in plant species, Genome Biol. Evol., 2012, vol. 4, no. 3, pp. 230–239.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ong, S., Lee, W.H., Kodo, K., et al., MicroRNA-mediated regulation of differentiation and transdifferentiation in stem cells, Adv. Drug Deliv. Rev., 2015, vol. 88, pp. 3–15.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ostertag, E.M., De Berardinis, R.J., Goodier, J.L., et al., A mouse model of human L1 retrotransposition, Nat. Genet., 2002, vol. 32, no. 4, pp. 655–660.PubMedCrossRefGoogle Scholar
  68. Pal, S., Gupta, R., and Davuluri, R., Alternative transcription and alternative splicing in cancer, Pharmacol. Ther., 2012, vol. 136, no. 3, pp. 283–294.PubMedCrossRefGoogle Scholar
  69. Patrushev, L.I. and Kovalenko, T.F., The functions of noncoding sequences of mammalian genome, Usp. Biol. Khim., 2014, vol. 54, pp. 39–102.Google Scholar
  70. Pavlicev, M., Hiratsuka, K., Swaqqart, K.A., et al., Detecting endogenous retrovirus-driven tissue-specific gene transcription, Genome Biol. Evol., 2015, vol. 7, no. 4, pp. 1082–1097.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pidpala, O.V., Iatsyshyna, A.P., and Lukash, L.L., Analysis of distribution of mobile genetic elements within the human TP53 gene and its 5'-flanking region, Biopolym. Cell, 2006, vol. 22, no. 1.Google Scholar
  72. Piriyapongsa, J. and Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements, PLoS One, 2007, vol. 14, no. 2, p. e203.CrossRefGoogle Scholar
  73. Piriyapongsa, J., Marino-Ramirez, L., and Jordan, I.K., Origin and evolution of human microRNAs from transposable elements, Genetics, 2007, vol. 176, no. 2, pp. 1323–1337.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Platt, R.N., Vandeweqe, M.W., Kern, C., et al., Large number of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats, Mol. Biol. Evol., 2014, vol. 31, no. 6, pp. 1536–1545.PubMedCrossRefGoogle Scholar
  75. Polavarapu, N., Marino-Ramirez, L., Landsman, D., et al., Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA, BMC Genomics, 2008, vol. 9, pp. 226–235.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Prak, E.T., Dodson, A.W., Farkash, E.A., and Kazazian, H.H., Tracking an embryonic L1 retrotransposition event, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 4, pp. 1832–1837.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Qin, S., Jin, P., Zhou, X., et al., The role of transposable elements in the origin and evolution of microRNAs in human, PLoS One, 2015, vol. 10, no. 6, p. e0131365.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Richardson, S.R., Morell, S., and Faulkner, G.J., L1 retrotransposons and somatic mosaicism in the brain, Annu. Rev. Genet., 2014, vol. 48, pp. 1–27.PubMedCrossRefGoogle Scholar
  79. Roberts, J.T., Cooper, E.A., and Favreau, C.J., Formation from transposable element insertions and noncoding RNA mutations, Mobile Genetic Elements, 2013, vol. 1, no. 6, p. e27755.CrossRefGoogle Scholar
  80. Samantarrai, D., Dash, S., Chhetri, B., et al., Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer, Mol. Cancer Res., 2013, vol. 11, no. 4, pp. 315–328.PubMedCrossRefGoogle Scholar
  81. Shao, P., Liao, J., Guan, D., et al., Drastic expression change of transposon-derived piRNA-like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation, RNA Biol., 2012, vol. 9, no. 2, pp. 212–227.PubMedCrossRefGoogle Scholar
  82. Shen, S., Guo, X., Yan, H., et al., A mir-130a-YAP positive feedback loop promotes organ size and tumorogenesis, Cell Res., 2015, vol. 25, pp. 997–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shi, X., Seluanov, A., and Gorbunova, V., Cell divisions are required for L1 retrotransposition, Mol. Cell. Biol., 2007, vol. 27, pp. 1264–1270.PubMedCrossRefGoogle Scholar
  84. Smalheiser, N.R. and Torvik, V.I., Mammalian microRNAs derived from genomic repeats, Trends Genet., 2005, vol. 21, no. 6, pp. 322–326.PubMedCrossRefGoogle Scholar
  85. Song, X. and Cao, X., Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice, Curr. Opin Plan. Biol., 2017, vol. 36, pp. 111–118.CrossRefGoogle Scholar
  86. Spengler, R.M., Oakley, C.K., and Davidson, B.L., Functional microRNAs and target sites are created by lineage- specific transposition, Hum. Mol. Genet., 2014, vol. 23, no. 7, pp. 1783–1793.PubMedCrossRefGoogle Scholar
  87. Tempel, S., Pollet, N., and Tahi, F., NcRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins, BMC Bioinformatics, 2012, vol. 13, pp. 246–258.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Testori, A., Caizzi, L., Cutrupi, S., et al., The role of transposable elements in shaping the combinatorial interaction of transcription factors, BMC Genomics, 2012, vol. 12, pp. 400–416.CrossRefGoogle Scholar
  89. Toledano, H., D’Alterio, C., Czech, B., et al., The let-7- lmp axis regulates ageing of the Drosophila testis stemcell niche, Nature, 2012, vol. 485, no. 7400, pp. 605–610.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Urusov, F.A., Nefedova, L.N., and Kim, A.I., Analysis of the tissue- and stage-specific transportation of the Drosophila melanogaster gypsy retrotransposon, Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 6, pp. 507–510.CrossRefGoogle Scholar
  91. Vanyushin, B.V., Epigenetics today and tomorrow, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 3, pp. 168–188.CrossRefGoogle Scholar
  92. Vasil’eva, L.A., Vykhristyuk, O.V., Antonenko, O.V., et al., The induction of transposition of transposable genetic elements in the Drosophila melanogaster genome by different stressors, Vestnik VOGiS, 2007, vol. 11, no. 3/4, pp. 662–671.Google Scholar
  93. Vasil’eva, L.A., Antonenko, O.V., Vykhristyuk, O.V., et al., Selection changes the pattern of transposable genetic elements in the Drosophila melanogaster genome, Vestnik VOGiS, 2008, vol. 12, no. 3, pp. 412–425.Google Scholar
  94. Wang, D., Su, Y., Wang, X., et al., Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in mammalian intron size expansion, Evol. Bioinform. Online, 2012, vol. 8, pp. 301–319.PubMedPubMedCentralGoogle Scholar
  95. Wang, J., Vicente-Garcia, C., Seruqqia, D., et al., MIR retrotransposons sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 32, pp. 4428–4437.CrossRefGoogle Scholar
  96. Wei, W., Morrish, T.A., and Alisch, R.S., A transient assay reveals that cultured human cells can accommodate multiple line-1 retrotransposition events, Anal. Biochem., 2000, vol. 284, pp. 435–438.PubMedCrossRefGoogle Scholar
  97. Wilhelm-Benartzi, C.S., Houseman, E.A., Maccani, M.A., et al., In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta, Environ. Health Perspect., 2012, vol. 120, no. 2, pp. 296–302.PubMedGoogle Scholar
  98. Wissing, S., Munoz-Lopez, M., Macia, A., et al., Reprogramming somatic cells into iPS cell activates LINE-1 retroelement mobility, Hum. Mol. Genet., 2012, vol. 21, no. 1, pp. 208–218.PubMedCrossRefGoogle Scholar
  99. Yuan, Z., Sun, X., Jianq, D., et al., Origin and evolution of a placental-specific microRNA family in the human genome, BMC Evol. Biol., 2010, vol. 10, pp. 346–358.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yuan, Z., Sun, X., Liu, H., et al., MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes, PLoS One, 2011, vol. 6, no. 3, p. e17666.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yurchenko, N.N., Kovalenko, L.V., and Zakharov, I.K., Transposable elements: instability of genes and genomes, Russ. J. Genet.: Appl. Res, 2011, vol. 1, no. 6, pp. 489–496.CrossRefGoogle Scholar
  102. Yushkova, E. and Zainullin, V., Transposition activity of P elements in natural and chronically irradiated Drosophila populations, Vestnik Inst. Biol. Komi NTs UrO RAN, 2009, no. 9, pp. 21–26.Google Scholar
  103. Zakrzewski, F., Schmidt, M., Van Lijsebettens, M., and Schmidt, T., DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.), Plant J., 2017. doi 10.1111/tpj.13526Google Scholar
  104. Zhang, G., Esteve, P., Chin, H.G., et al., Small RNAmediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation, Nucleic Acids Res., 2015, vol. 43, no. 12, pp. 6112–6124.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Institute of Biochemistry and Genetics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations