Abstract
Retinoic acid (RA) plays an important role in vertebrate development and regeneration. RA signalling directly regulates the expression of Hox genes, being in this way involved in the patterning of the anterior-posterior (AP) axis of vertebrate embryos. So far the relationship between retinoic acid signalling and Hox genes has been shown only for chordates. In this study we incubated juvenile worms and regenerating worms of two polychaete species from the family Nereididae, Alitta virens and Platynereis dumerilii, with all-trans-retinal, the precursor of retinoic acid. Under the influence of all-trans-retinal the anterior expression boundary of Post2 Нох gene shifted towards the anterior end both in intact and in regenerating worms of both species. Our data indicate the existence of a relationship between RA signalling and Нох genes in Protostomia.
This is a preview of subscription content, access via your institution.
References
Ahn, Y., Mullan, H.E., and Krumlauf, R., Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development, Dev. Biol., 2014, vol. 388, pp. 134–144.
Albalat, R., The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations, Mol. Cell Endocrinol., 2009, vol. 313, pp. 23–35.
Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y., and Kulakova, M.A., Hox gene expression during postlarval development of the polychaete Alitta virens, EvoDevo, 2013, vol. 4, p. 13.
Bel-Vialar, S., Itasaki, N., and Krumlauf, R., Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups, Development, 2002, vol. 129, pp. 5103–5115.
Brade, T., Kumar, S., Cunningham, T.J., Chatzi, C., Zhao, X., Cavallero, S., Li, P., Sucov, H.M., Ruiz-Lozano, P., and Duester, G., Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2, Development, 2011, vol. 138, pp. 139–148.
Bui-Gobbels, K., Quintela, R.M., Braunig, P., et al., Is retinoic acid a signal for nerve regeneration in insects?, Neural Regener. Res., 2015, vol. 10, no. 6, pp. 901–903.
Campo-Paysaa, F., Marletaz, F., Laudet, V., and Schubert, M., Retinoic acid signaling in development: tissue-specific functions and evolutionary origins, Genesis, 2008, vol. 46, pp. 640–656.
Canestro, C., Postlethwait, J.H., Gonzalez-Duarte, R., and Albalat, R., Is retinoic acid genetic machinery a chordate innovation?, Evol. Dev., 2006, vol. 8, no. 5, pp. 394–406.
Chang, J., Skromne, I., and Ho, R.K., Cdx4 and retinoic acid interact to position the hindbrain-spinal cord transition, Dev. Biol., 2016, vol. 410, no. 2, pp. 178–189.
Cunningham, T.J. and Duester, G., Mechanisms of retinoic acid signaling and its roles in organ and limb development, Nat. Rev. Mol. Cell Biol., 2015. doi 10.1038/nrm3932
Ermakova, O.N., Ermakov, A.M., Tiras, Kh.P., and Lednev, V.V., Retinoic acid as a regulator of planarian morphogenesis, Russ. J. Dev. Biol., 2009, vol. 40, no. 6, pp. 367–372.
Farrar, N.R., Dmetrichuk, J.M., Carlone, R.L., and Spencer, G.E., A novel, nongenomic mechanism underlies retinoic acid-induced growth cone turning, J. Neurosci., 2009, vol. 29, pp. 14136–14142.
Fröbius, A.C., Matus, D.Q., and Seaver, E.C., Genomic organization and expression demonstrate spatial and temporal Hox gene collinearity in the lophotrochozoan Capitella sp., PLoS One, 2008, vol. 3, p. e4004.
Gudas, L.J., Emerging roles for retinoids in regeneration and differentiation in normal and disease states, Biochem. Biophys. Acta, 2012, vol. 1821, no. 1, pp. 213–221.
Hernandez, R.E., Putzke, A.P., Myers, J.P., Margaretha, L., and Moens, C.B., Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development, Development, 2007, vol. 134, pp. 177–187.
Houle, M., Prinos, P., Iulianella, A., Bouchard, N., and Lohnes, D., Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification, Mol. Cell Biol., 2000, vol. 20, no. 17, pp. 6579–6586.
Katsuyama, Y., Wada, S., Yasugi, S., and Saiga, H., Expression of the labial group Hox gene HrHox-1 and its alteration induced by retinoic acid in development of the ascidian Halocynthia roretzi, Development, 1995, vol. 121, pp. 3197–3205.
Kulakova, M., Bakalenko, N., Novikova, E., Cook, C.E., Eliseeva, E., Steinmetz, P.R., Kostyuchenko, R.P., Dondua, A., Arendt, D., Akam, M., and Andreeva, T., Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa), Dev. Genes Evol., 2007, vol. 217, pp. 39–54.
Kumar, S. and Duester, G., Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2, Dev. Biol., 2010, vol. 340, pp. 67–74.
Kumar, S., Cunningham, T.J., and Duester, G., Resolving molecular events in the regulation of meiosis in male and female germ cells, Sci. Signal., 2013, vol. 6, p. e25.
Linville, A., Gumusaneli, E., Chandraratna, R.A., and Schilling, T.F., Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain, Dev. Biol., 2004, vol. 270, pp. 186–199.
Maden, M., Vitamin A and pattern formation in the regenerating limb, Nature, 1982, vol. 295, pp. 672–675.
Maden, M. and Hind, M., Retinoic acid, a regenerationinducing molecule, Dev. Dynam., 2003, vol. 226, pp. 237–244.
Mainguy, G., In der Rieden, P.M.J., Berezikov, E., Woltering, J.M., Plasterk, R.H.A., and Durston, A.J., A position-dependent organisation of retinoid response elements is conserved in the vertebrate Hox clusters, Trends Genet., 2003, vol. 19, no. 9, pp. 476–479.
Marletaz, F., Holland, L.Z., Laudet, V., and Schubert, M., Retinoic acid signaling and the evolution of chordates, Int. J. Biol. Sci., 2006, vol. 2, no. 2, pp. 38–47.
Maves, L. and Kimmel, C.B., Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid, Dev. Biol., 2005, vol. 285, pp. 593–605.
Molotkova, N., Molotkov, A., and Duester, G., Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone, Dev. Biol., 2007, vol. 303, pp. 601–610.
Nagatomo, K., Ishibashi, T., Satou, Y., Satoh, N., and Fujiwara, S., Retinoic acid affects gene expression and morphogenesis without upregulating the retinoic acid receptor in the ascidian Ciona intestinalis, Mech. Dev., 2003, vol. 120, pp. 363–372.
Niazi, I.A. and Saxena, S., Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin, Folia Biol. (Krakow), 1978, vol. 26, pp. 3–8.
Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P., and Dollé, P., Retinoic acid synthesis and hindbrain patterning in the mouse embryo, Development, 2000, vol. 127, pp. 75–85.
Nowickyj, S.M., Chithalen, J.V., Cameron, D., Tyshenko, M.G., Petkovich, M., Wyatt, G.R., Jones, G., and Walker, V.K., Locust retinoid X receptors: 9-cisretinoic acid in embryos from a primitive insect, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 9540–9545.
Oosterveen, T., Niederreither, K., Dolle, P., Chambon, P., Meijlink, F., and Deschamps, J., Retinoids regulate the anterior expression boundaries of 5' HoxB genes in posterior hindbrain, EMBO J., 2003, vol. 22, no. 2, pp. 262–269.
Rhinn, M. and Dolle, P., Retinoic acid signalling during development, Development, 2012, vol. 139, pp. 843–858.
Rijli, F.M., Gavalas, A., and Chambon, P., Segmentation and specification in the branchial region of the head: the role of the Hox selector genes, Int. J. Dev. Biol., 1998, vol. 42, pp. 393–401.
Santini, S., Boore, J.L., and Meyer, A., Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters, Genome Res., 2003, vol. 13, no. 6A, pp. 1111–1122.
Schubert, M., Holland, N.D., Laudet, V., and Holland, L.Z., A retinoic acid–Hox hierarchy controls both anterior/ posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus, Dev. Biol., 2006, vol. 296, pp. 190–202.
Sciarrino, S. and Matranga, V., Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo, Cell Biol. Int. Rep., 1995, vol. 19, pp. 675–680.
Sirbu, I.O., Gresh, L., Barra, J., and Duester, G., Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression, Development, 2005, vol. 132, pp. 2611–2622.
Sukiban, J., Bräunig, P., Mey, J., and Bui-Göbbels, K., Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria, Cell Tissue Res., 2014, vol. 358, pp. 303–312.
Wada, H., Escriva, H., Zhang, S., and Laudet, V., Conserved rare localization in amphioxus Hox clusters and implications for Hox code evolution in the vertebrate neural crest, Dev. Dynam., 2006, vol. 235, pp. 1522–1531.
Young, T., Rowland, J.E., van de Ven, C., Bialecka, M., Novoa, A., Carapuco, M., van Nes, J., de Graaff, W., Duluc, I., Freund, J.N., Beck, F., Mallo, M., and Deschamps, J., Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos, Dev. Cell, 2009, vol. 17, no. 4, pp. 516–526.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Ontogenez, 2017, Vol. 48, No. 3, pp. 248–256.
The article was translated by the authors.
Rights and permissions
About this article
Cite this article
Bakalenko, N.I., Poznyak, A.V., Novikova, E.L. et al. Effect of retinoids on Post2 Нох gene expression in nereid polychaetes. Russ J Dev Biol 48, 211–218 (2017). https://doi.org/10.1134/S106236041703002X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S106236041703002X
Keywords
- Hox genes
- RA signaling
- polychaetes