Skip to main content
Log in

Phenomenon of “Siamese embryos” in cereals in vivo and in vitro: Cleavage polyembryony and fasciations

  • Developmental Biology of Plants
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The genesis of wheat microsporial polyembryoids in vitro was analyzed in detail. The nature of different phenotypes of cereal polymeric embryos was identified. They represent the class “multiple shoot meristems,” which results from a cleavage polyembryony and is accompanied by organ fasciations of all known types (radial, flat, or ring). The morphological nature of cereal embryonic organs has been clarified: shoot meristem—axial organ; scutellum—lateral outgrowth of this axis; coleoptile—derivative of shoot meristem but fused with scutellum; terminality of scutellum—the result of linear fasciation that occurred historically. An explanation is given on how the structural model of an auxin polar transport works during the establishment of bilateral symmetry in a cereal embryo that is associated with the inverted polarization of the carrier protein PIN1 on cell membranes and, correspondingly, with the inverted auxin transport performed by this carrier (Fischer-Iglesias et al., 2001; Forestan et al., 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batygina, T.B., Embriologiya pshenitsy (Wheat Embryology), Leningrad: Kolos, 1974.

    Google Scholar 

  • Batygina, T.B., Stem cells and morphogenetic developmental programs in plants, Stem Cell Res. J., 2011, vol. 3, nos. 1–2, pp. 45–120.

    Google Scholar 

  • Batygina T.B., Polymorphism of sexual and somatic embryos as manifestation of their developmental parallelism under natural conditions and in tissue culture, in Plant Biotechnology and Molecular Markers, Eds. Srivastava P.S., Narula A., Srivastava S. New Delhi: Anamaya Publishers, 2004. pp. 43–59.

    Google Scholar 

  • Batygina, T.B., Biologiya razvitiya rastenii. Simfoniya zhizni (Developmental Biology of Plants: Symphony of Life), St. Petersburg: DEAN, 2014.

    Google Scholar 

  • Batygina, T.B. and Osadtchiy, J.V., Polyembryony: twins—the result of vegetative propagation, Int. J. Plant Reprod. Biol., 2013, vol. 5, no. 1, pp. 21–27.

    Google Scholar 

  • Batygina, T.B., Kruglova, N.N., Gorbunova, V.Yu., Titova, G.E., and Sel’dimirova, O.A., Ot mikrospory–k sortu (From Microspore to Variety), Moscow: Nauka, 2010.

    Google Scholar 

  • Berlin, G.P. and Miksche, G.P., Botanical Microtechnique and Cytochemistry, Iowa: State Univ. Press, 1976.

    Google Scholar 

  • Braun, A., Über Polyembryonie und Keimung von Coelebogyne, in Ein Naehtrag zu der Abhandlung über Parthenogenesis bei Pflanzen, Berlin: Abh. Kon. Akad. Wiss, 1859.

    Google Scholar 

  • Brisibe, E.A., Gajdosova, A., Olesen, A., and Andersen, S.B., Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat, J. Exp. Bot., 2000, vol. 51, no. 343, pp. 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, Ch.-Ch. and Ouyang, T.-W., A set of potato media for wheat anther culture, in Symp. on Plant Tissue Culture: Proceed., Peking: Sci. Press, 1978, pp. 52–56.

    Google Scholar 

  • Choob, V.V. and Sinyushin, A.A., Flower and shoot fasciation: from phenomenology to the construction of models of apical meristem transformations, Russ. J. Plant Physiol., 2012, vol. 59, no. 4, pp. 530–545.

    Article  CAS  Google Scholar 

  • Danilova, M.F., On the nature of fasciation in plants, Bot. Zh., 1961, vol. 46, no. 10, pp. 1545–1549.

    Google Scholar 

  • Durzan, D.J., Monozygotic cleavage polyembryogenesis and conifer tree improvement, Cytol. Genet., 2008, vol. 42, no. 3, pp. C. 27–447.

    Article  Google Scholar 

  • Erdelska, O. and Vidovencova, Z., Cleavage polyembryony in maize, Sex. Plant Reprod., 1992, vol. 5, no. 3, pp. 224–226.

    Article  Google Scholar 

  • Erdelska, O. and Vidovencova, Z., Cleavage polyembryony in vivo and in vitro, Biol. Plant., 1994, vol. 36, no. 3, pp. 329–334.

    Article  Google Scholar 

  • Ferguson, J.D. and McEwan, J.M., The chemical induction of supernumerary shoots in the developing embryos of wheat, Physiol. Plant., 1970, vol. 23, no. 1, pp. 18–28.

    Article  CAS  Google Scholar 

  • Ferguson, J.D., McEwan, J.M., and Card, K.A., Hormonally induced polyembryos in wheat, Physiol. Plant., 1979, vol. 45, no. 4, pp. 470–474.

    Article  CAS  Google Scholar 

  • Fischer-Iglesias, C., Sundberg, B., Neuhaus, G., and Jones, A.M., Auxin distribution and transport during embryonic pattern formation in wheat, Plant J., 2001, vol. 26, no. 2, pp. 115–129.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, C. and Neuhaus, G., Influence of auxin on the establishment of bilateral symmetry in monocots, Plant J., 1996, vol. 9, no. 5, pp. 659–669.

    Article  CAS  Google Scholar 

  • Fischer, C., Speth, V., Fleig-Eberenz, S., and Neuhaus, G., Induction of zygotic polyembryos in wheat: influence of auxin polar transport, Plant Cell, 1997, vol. 9, no. 10, pp. 1767–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forestan, C., Meda, S., and Varotto, S., ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development, Plant Physiol., 2010, vol. 152, no. 3, pp. 1373–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haccius, B., Experimentally induced twinning in plants, Nature, 1955, vol. 176, no. 4477, pp. 355–356.

    Article  Google Scholar 

  • Howell, S.H., Lall, S., and Che, P., Cytokinins and shoot development, Trends Plant Sci., 2003, vol. 8, no. 9, pp. 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D. and Hake, S., Control of phyllotaxy in maize by the abphyl1 gene, Development, 1999, vol. 126, no. 2, pp. 315–323.

    CAS  PubMed  Google Scholar 

  • Kruglova, N.N. and Batygina, T.B., Metodicheskie rekomendatsii po ispol’zovaniyu morfogeneticheskogo potentsiala pyl’nika v biotekhnologicheskikh issledovaniyakh yarovoi myagkoi pshenitsy (Guidelines on the Use of the Morphogenetic Potential of the Anther in Biotechnological Studies of Spring Common Wheat), Ufa: IB UNTs RAN, 2002.

    Google Scholar 

  • Kruglova, N.N., Batygina, T.B., Gorbunova, V.Yu., Titova, G.E., and Seldimirova, O.A., Embriologicheskie osnovy androklinii pshenitsy: atlas (Embryological Basis of Wheat Androcliny: Atlas), Moscow: Nauka, 2005.

    Google Scholar 

  • Kruglova, N.N., Egorova, O.V., Seldimirova, O.A., Zaitsev, D.Yu., and Zinatullina, A.E., Svetovoi mikroskop kak instrument v biotekhnologii rastenii (The Light Microscope as a Tool in Plant Biotechnology), Ufa: Gilem, Bashk. Entsikl., 2013.

    Google Scholar 

  • Lynn, J.A., Rapid toluidine blue staining of Epon-embedded and mounted “adjacent” sections, Amer. J. Clin. Path., 1965, vol. 44, no. 1, pp. 57–58.

    Article  CAS  Google Scholar 

  • Morgan, D.T. and Rappleye, R.D., Polyembryony in maize and lily following X-irradiation of the pollen, J. Hered., 1951, vol. 42, no. 2, pp. 91–93.

    Google Scholar 

  • Nishimura, M., Comparative morphology and development of Poa pratensis, Phleum pretense and Setaria italica, Jap. J. Bot., 1922, vol. 1, no. 2, pp. 55–85.

    Google Scholar 

  • Osone, K. and Oono, K., Effects of irradiation on embryogenesis in rice: I. Stage-specific responses in the induction of M1 lethality and twins, Jap. J. Breed., 1970, vol. 20, no. 3, pp. 151–159.

    Article  Google Scholar 

  • Paul, P., Awasthi, A., Kumar, S., Verma, S.K., Prasad, R., and Dhaliwal, H.S., Development of multiple embryos in polyembryonic insertional mutant OsPE of rice, Plant Cell Rep., 2012, vol. 31, no. 10, pp. 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  • Puri, A., Basha, P.O., Kumar, M., Rajpurohit, D., Randhawa, G.S., Kianian, S.F., Rishi, A., and Dhaliwal, H.S., The polyembryo gene (OsPE) in rice, Funct. Integr. Genom., 2010, vol. 10, no. 3, pp. 359–366.

    Article  CAS  Google Scholar 

  • Rober-Kleber, N., Albrechtová, J.T.P., Fleig, S., Huck, N., Michalke, W., Wagner, E., Speth, V., Neuhaus, G., and Fischer-Iglesias, C., Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development, Plant Physiol., 2003, vol. 131, no. 3, pp. 1302–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segui-Simarro, J.M. and Nuez, F., How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis, Physiol. Plant., 2008, vol. 134, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Segui-Simarro, J.M., Androgenesis revisited, Bot. Rev., 2010, vol. 76, pp. 377–404.

    Article  Google Scholar 

  • Seldimirova, O.A. and Kruglova, N.N., Androclinic embryoidogenesis in vitro in cereals, Biol. Bull. Rev., 2015, vol. 5, no. 2, pp. 156–165.

    Article  Google Scholar 

  • Seldimirova, O.A., Titova, G.E., Galin, I.R., and Kruglova, N.N., Structural mechanisms of symmetry establishment in microspore-derived embryoids in wheat: the data of scanning electron microscopy, Izv. Samarsk. NTs RAN, 2013, vol. 15, no. 3 (5), pp. 1676–1679.

    Google Scholar 

  • Seldimirova, O.A., Titova, G.E., and Kruglova, N.N., Androclinic “Siamese embryos” of wheat in vitro, Izv. Ufimsk. NTs RAN, 2015, no. 4 (1), pp. 137–142.

    Google Scholar 

  • Sharma, K.K. and Thorpe, T.A., Asexual embryogenesis in vascular plants in nature, in In Vitro Embryogenesis in Plants, Thorpe, T.A., Ed., Dordrecht: Kluwer Acad. Publ., 1995, pp. 17–72.

    Chapter  Google Scholar 

  • Soriano, M., Li, H., and Boutilier, K., Microspore embryogenesis: establishment of embryo identity and pattern in culture, Plant Reprod., 2013, vol. 26, pp. 181–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titova, G.E., Structural organization of dicot and monocot embryos. Principles of differences and possible mechanisms of their origin, in XIX Intern. Congr. on Sexual Plant Reproduction: Abstr., Budapest, 2006, p. 94.

    Google Scholar 

  • Titova, G.E., Structural organization of monocot and dicot embryos: principles of distinctions and possible mechanisms of their occurrence, in II mezhdunarodnaya shkola molodykh uchenykh “Embriologiya, genetika i biotekhnologiya”: Materialy (Proc. II Int. School for Young Scientists “Embryology, Genetics, and Biotechnology”), Ufa, 2007, pp. 112–114.

    Google Scholar 

  • Yakovlev, M.S. and Snegirev, D.P., Effect of growth substances on the formation of polyembryonic caryopses in wheat, Bot. Zh., 1954, vol. 39, no. 2, pp. 187–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Titova.

Additional information

Original Russian Text © G.E. Titova, O.A. Seldimirova, N.N. Kruglova, I.R. Galin, T.B. Batygina, 2016, published in Ontogenez, 2016, Vol. 47, No. 3, pp. 152–169.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, G.E., Seldimirova, O.A., Kruglova, N.N. et al. Phenomenon of “Siamese embryos” in cereals in vivo and in vitro: Cleavage polyembryony and fasciations. Russ J Dev Biol 47, 122–137 (2016). https://doi.org/10.1134/S10623604160300x61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10623604160300x61

Keywords

Navigation