Skip to main content
Log in

Long-term sperm storage in the Siberian crane (Grus leucogeranus pallas): Analysis of paternity and relatedness under artificial insemination

  • Developmental Biology of Vertebrates
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Using ten microsatellite loci, paternity analysis has been conducted for 71 individuals of the Siberian crane (Grus leucogeranus Pallas) obtained under artificial insemination in Oka Crane Breeding Center in 2001–2014. The fathers of 39 chicks were the sires whose sperm was used for insemination directly before fertilized egg laying. Paternity of 23 fertilizations belonged to the sires whose sperm was used in the beginning or middle of insemination cycle. Nine cases of fertilization resulted from natural copulation of artificially inseminated females with their social partners. The terms of sperm storage in the female’s reproductive ducts before fertilization were 0–6 days in the case of paternity of the last sperm donor and 2–15 days in the case of competing sperm by previous donors. Genetic relatedness by microsatellite loci between breeders of the captive Siberian crane population does not prevent fertilization and does not always lead to inbreeding depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birkhead, T.R., Cryptic female choice: criteria for establishing female sperm choice, Evolution, 1998, vol. 52, no. 4, pp. 1212–1218.

    Article  Google Scholar 

  • Birkhead, T.R. and Pizzari, T., Postcopulatory sexual selection, Nature Rev. Genet., 2002, vol. 3, no. 4, pp. 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Evans, J.P., Zane, L., Francescato, S., and Pilastro, A., Directional postcopulatory sexual selection revealed by artificial insemination, Nature, 2003, vol. 421, no. 6921, pp. 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Foerster, K., Delhey, K., Johnsen, A., et al., Females increase offspring heterozygosity and fitness through extra-pair matings, Nature, 2003, vol. 425, no. 6959, pp. 714–717.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, M.A., Britten, H.B., and Barzen, J.A., Extra-pair fertilizations in sandhill cranes revealed using microsatellite DNA markers, Condor, 2006, vol. 108, no. 4, pp. 970–976.

    Article  Google Scholar 

  • Hayes, M.A., Observation of an extra-pair copulation by sandhill cranes, Wilson J. Ornith., 2007, vol. 119, no. 1, pp. 113–116.

    Article  Google Scholar 

  • Jones, K.L. and Nicolich, J.M.,, Artificial insemination in captive whooping cranes: results from genetic analyses, Zoo Biol., 2001, no. 20, pp. 331–342.

    Article  CAS  Google Scholar 

  • Kashentseva, T.A. and Belterman, R., Siberian Crane, Grus leucogeranus International Studbook, Oka State Biosphere Nature Reserve, 2014.

    Google Scholar 

  • Lovlie, H., Gillingham, M.A.F., Worley, K., et al., Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males, Proc. R. Soc. B, 2013, vol. 280, no. 1769, pp. 1–9.

    Article  Google Scholar 

  • Maksudov, G.Yu., Long-term sperm survival in the reproductive ducts of female vertebrates, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: MGU, 1996.

    Google Scholar 

  • Maksudov, G.Yu., Environmental aspects of the long-term sperm survival in the reproductive ducts genital tract of female cranes, in Zhuravli Evrazii (Biologiya, Ohrana, Razvedenie) (Cranes of Eurasia (Biology, Conservation, and Breeding)), 2006, no. 2, pp. 57–60.

    Google Scholar 

  • Maksudov, G.Yu., Markina, T.A., and Panchenko, V.G., Sperm survival in the female sandhill crane, Ornitologiya, 1991, vol. 25, pp. 198–200.

    Google Scholar 

  • Mays, H.L. and Hill, G.E., Choosing mates: good genes versus genes that are a good fit, Trends Ecol. Evol., 2004, vol. 19, no. 10, pp. 554–559.

    Article  PubMed  Google Scholar 

  • Mays, H.L., Albrecht, T., Liu, M., and Hill, G.E., Female choice for genetic complementarity in birds: a review, Genetics, 2008, vol. 134, no. 1, pp. 147–158.

    Google Scholar 

  • Mudrik, E.A., Kashentseva, T.A., and Politov, D.V., Genetic diversity and multilocus genotyping of Siberian crane for microsatellite loci, in Zhuravli Evrazii (Biologiya, rasprostranenie, migratsiya, upravlenie) (Cranes of Eurasia (Biology, Distribution, Migration, Management)), 2011, no. 4, pp. 81–87.

    Google Scholar 

  • Mudrik, E.A., Kashentseva, T.A., and Politov, D.V., DNA analysis proved paternity of “husbands” in artificially bred Siberian cranes, Siberian Crane Flyway News, 2014a, no. 13, pp. 21–22.

    Google Scholar 

  • Mudrik, E.A., Kashentseva, T.A., Gamburg, E.A., and Politov, D.V., Genetic passportization and identification of Siberian cranes (Grus leucogeranus Pallas) in captivity, Biol. Bull. (Moscow), 2014b, vol. 41, no. 3, pp. 208–215.

    Article  Google Scholar 

  • Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queller, D.C. and Goodnight, K.F., Estimating relatedness using genetic markers, Evolution, 1989, vol. 43, no. 2, pp. 258–275.

    Article  Google Scholar 

  • Russman, S.I., Timing insemination to maximize fertility in cranes, in Proc. Crane Workshop, Lewis, J.C., Ed., Grand Island, Nebr., 1985, pp. 398–405.

    Google Scholar 

  • Swengel, S.R. and Tuite, M.L., Recent advances in scheduling strategies and practical techniques in crane artificial insemination, Proc. North Am. Crane Workshop, 1997, no. 7, pp. 46–55.

    Google Scholar 

  • Tarvin, K.A., Webster, M.S., Tuttle, E.M., and Pruett-Jones, S., Genetic similarity of social mates predicts the level of extrapair paternity in splendid fairy-wrens, Anim. Behav., 2005, no. 70, pp. 945–955.

    Article  Google Scholar 

  • Tregenza, T. and Wedell, N., Genetic compatibility, mate choice and patterns of parentage: invited review, Mol. Ecol., 2000, vol. 9, no. 8, pp. 1013–1027.

    Article  CAS  PubMed  Google Scholar 

  • Tregenza, T. and Wedell, N., Polyandrous females avoid costs of inbreeding, Nature, 2002, vol. 415, no. 6867, pp. 71–73.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, P.S., Metzger, D.A., and Higuchi, R., Chelex-100 as a medium for simple extraction of DNA for PCRbased typing from forensic material, BioTechniques, 1991, vol. 10, no. 4, pp. 506–513.

    CAS  PubMed  Google Scholar 

  • Zeh, J.A. and Zeh, D.W., The evolution of polyandry II: Post-copulatory defenses against genetic incompatibility, Proc. R. Soc. Lond. B, 1997, vol. 264, no. 1378, pp. 69–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mudrik.

Additional information

Original Russian Text © E.A. Mudrik, T.A. Kashentseva, D.V. Politov, 2016, published in Ontogenez, 2016, Vol. 47, No. 3, pp. 131–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrik, E.A., Kashentseva, T.A. & Politov, D.V. Long-term sperm storage in the Siberian crane (Grus leucogeranus pallas): Analysis of paternity and relatedness under artificial insemination. Russ J Dev Biol 47, 103–108 (2016). https://doi.org/10.1134/S106236041603005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041603005X

Keywords

Navigation