Skip to main content
Log in

Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye

  • Mechanisms of Cell Proliferation and Differentiation
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhäuser, B., Strähle, U., Götz, M., and Bally-Cuif, L., Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon, Dev. Biol., 2006, vol. 295, pp. 278–293.

    Article  CAS  PubMed  Google Scholar 

  • Ayari, B., El Hachimi, K.H., Yanicostas, C., Landoulsi, A., and Soussi-Yanicostas, N., Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon, J. Neurotrauma, 2010, vol. 27, pp. 959–972.

    Article  PubMed  Google Scholar 

  • Battisti, W.P., Shinar, Y., Schwartz, M., Levitt, P., and Murray, M., Temporal and spatial patterns of expression of laminin, chondroitin sulphate proteoglycan and HNK-1 immunoreactivity during regeneration in the goldfish optic nerve, J. Neurocytol., 1992, vol. 21, pp. 557–573.

    Article  CAS  PubMed  Google Scholar 

  • Battisti, W.P., Wang, J., Bozek, K., and Murray, M., Macrophages, microglia, and astrocytes are rapidly activated after crush injury of the goldfish optic nerve: a light and electron microscopic analysis, J. Comp. Neurol., 1995, vol. 354, pp. 306–320.

    Article  CAS  PubMed  Google Scholar 

  • Becker, C.G. and Becker, T., Adult zebrafish as a model for successful central nervous system regeneration, Restor. Neurol. Neurosci., 2008, vol. 26, pp. 71–80.

    PubMed  Google Scholar 

  • Bernardos, R.L., Barthel, L.K., Meyers, J.R., and Raymond, P.A., Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells, J. Neurosci., 2007, vol. 27, pp. 7028–7040.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, R. and MacDonald Bravo, H., Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites, J. Cell Biol., 1987, vol. 105, pp. 1549–01554.

    Article  CAS  PubMed  Google Scholar 

  • Candal, E., Anadón,, R., DeGrip, W.J., and Rodríguez-Moldes, I., Patterns of cell proliferation and cell death in the developing retina and optic tectum of brown trout, Dev. Brain Res., 2005, vol. 154, pp. 101–119.

    Article  CAS  Google Scholar 

  • Cen, L.P., Luo, J.M., Zhang, C.W., Fan, Y.M., Song, Y., So, K.F., van Rooijen, N., Pang, C.P., Lam, D.S.C., and Cui, Q., Chemotactic effect of ciliary neurotrophic factor on macrophages in retinal ganglion cell survival and axonal regeneration, Vision Res., 2007, vol. 48, pp. 4257–4266.

    Google Scholar 

  • Chapouton, P., Webb, K.J., Stigloher, C., Alunni, A., Adolf, B., Hesl, B., Topp, S., Kremmer, E., and Bally-Cuif, L., Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain, J. Comp. Neurol., 2011, vol. 519, pp. 1748–1769.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K.S., Yang, L., Lu, B., Feng, Ma H., Huang, X., Pekny, M., and Chen, D.F., Re-establishing the regenerative potential of central nervous system axons in postnatal mice, J. Cell Sci., 2005, vol. 118, pp. 863–872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clint, S.C. and Zupanc, G.K.H., Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia, Dev. Brain Res., 2001, vol. 130, pp. 15–23.

    Article  CAS  Google Scholar 

  • Cui, Y., Yin, Y., and Benowitz, L.I., Role of macrophages in optic nerve regeneration, Neuroscience, 2009, vol. 158, pp. 1039–1048.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devadas, M., Sugawara, K., Shimada, Y., Sugitani, K., Liu, Z.W., Matsukawa, T., and Kato, S., Slow recovery of goldfish retinal ganglion cells' soma size during regeneration, Neurosci. Res., 2000, vol. 37, pp. 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Elmore, S., Apoptosis: a review of programmed cell death, Toxicol. Pathol., 2007, vol. 35, pp. 495–516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Extröm, P., Johnsson, C.M., and Ohlin, L.M., Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones, J. Comp. Neurol., 2001, vol. 436, pp. 92–110.

    Article  Google Scholar 

  • Fernández, A.S., Rosillo, J.C., Casanova, G., and Olivera-Bravo, S., Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiform: Rivulidae): a comparative study, Neuroscience, 2011, vol. 189, pp. 12–24.

    Google Scholar 

  • Fimbel, S.M., Montgomery, J.E., Burket, C.T., and Hyde, D.R., Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish, J. Neurosci., 2007, vol. 27, pp. 1712–1724.

    Article  CAS  PubMed  Google Scholar 

  • Frade, J.M. and Barde, Y.A., Microglia-derived nerve growth factor causes cell death in the developing retina, Neuron, 1998, vol. 20, pp. 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Francis, A., Raabe, T.D., Wen, D., and DeVries, G.H., Neuregulins and ErbB receptors in cultured neonatal astrocytes, J. Neurosci. Res., 1999, vol. 57, pp. 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Ganz, J., Kaslin, J., Hochmann, S., Freudenreich, D., and Brand, M., Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon, Glia, 2010, vol. 58, pp. 1345–1363.

    PubMed  Google Scholar 

  • García,, D.M. and Koke, J.R., Astrocytes as gate-keepers in optic nerve regeneration, Comp. Biochem. Physiol. A, 2009, vol. 152, pp. 135–138.

    Article  Google Scholar 

  • Garcia-Valenzuela, E., Sharma, S.C., and Piña, A.L., Multilayered retinal microglial response to optic nerve transection in rats, Mol. Vis., 2005, vol. 1, pp. 225–231.

    Google Scholar 

  • Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., and Brand, M., Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate, Dev. Biol., 2006, vol. 295, pp. 263–277.

    Article  CAS  PubMed  Google Scholar 

  • Grosche, J., Hartig, W., and Reichenbach, A., Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats, Neurosci. Lett., 1995, vol. 185, pp. 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Hailer, N.P., Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells, Prog. Neurobiol., 2008, vol. 8, pp. 211–233.

    Article  Google Scholar 

  • Hanisch, U.K., Microglia as a source and target of cytokines, Glia, 2002, vol. 4, pp. 140–155.

    Article  Google Scholar 

  • Hinsch, K. and Zupanc, G.K.H., Generation and longterm persistence of new neurons in the adult zebrafish brain: a quantitative analysis, Neuroscience, 2007, vol. 146, pp. 679–696.

    Article  CAS  PubMed  Google Scholar 

  • Johns, P.R., Growth of the adult goldfish eye. III. Source of the new retinal cells, J. Comp. Neurol., 1977, vol. 176, pp. 343–357.

    Article  CAS  PubMed  Google Scholar 

  • Johns, P.R., Formation of photoreceptors in larval and adult goldfish, J. Neurosci., 1982, vol. 2, pp. 178–198.

    CAS  PubMed  Google Scholar 

  • Kaslin, J., Ganz, J., Geffarth, M., Grandel, H., Hans, S., and Brand, M., Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche, J. Neurosci., 2009, vol. 29, pp. 6142–6153.

    Article  CAS  PubMed  Google Scholar 

  • Kerr J.F., Gobé, G.C., Winterford, C.M., Harmon, B.V., Anatomical methods in cell death, in Cell Death, Schwartz, L.M. and Osborne, B.A., Eds., San Diego: Acad. Press, 1995, pp. 1–27.

    Chapter  Google Scholar 

  • Kishimoto, N., Shimizu, K., and Sawamoto, K., Neuronal regeneration in a zebrafish model of adult brain injury, Dis. Models Mech., 2012, vol. 5, pp. 200–209.

    Article  CAS  Google Scholar 

  • Kriegstein, A. and Alvarez-Buylla, A., The glial nature of embryonic and adult neural stem cells, Annu. Rev. Neurosci., 2009, vol. 32, pp. 149–184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., and Brand, M., Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors, Development, 2011, vol. 138, pp. 4831–4841.

    Article  CAS  PubMed  Google Scholar 

  • Kustermann, S., Schmid, S., Biehlmaier, O., and Kohler, K., Survival, excitability, and transfection of retinal neurons in an organotypic culture of mature zebrafish retina, Cell Tissue Res., 2008, vol. 332, pp. 195–209.

    Article  PubMed  Google Scholar 

  • Liou, A.K., Clark, R.S., Henshall, D.C., Yin, X.-M., and Chen, J., To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways, Prog. Neurobiol., 2003, vol. 69, pp. 103–142.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J.M., Cen, L.P., Zhang, X.M., Chiang, S.Y., Huang, Y., Lin, D., Fan, Y., van Rooijen, N., Lam, D.S.C., Pang, C.P., and Cui, Q., PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury, Eur. J. Neurosci., 2007, vol. 26, pp. 828–842.

    Article  PubMed  Google Scholar 

  • Mack, A.F. and Wolburg, H., Growing axons in fish optic nerve are accompanied by astrocytes interconnected by tight junctions, Brain Res., 2006, vol. 1103, pp. 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Malatesta, P., Appolloni, I., and Calzolari, F., Radial glia and neural stem cells, Cell Tissue Res., 2008, vol. 331, pp. 165–178.

    Article  PubMed  Google Scholar 

  • Margotta, V., Morelli, A., Gelosi, E., and Alfei, L., PCNA positivity in the mesencephalic matrix areas in the adult of a teleost, Carassius carassius L., Ital. J. Anat. Embriol., 2002, vol. 107, pp. 185–198.

    Google Scholar 

  • Merkulov, A.G., Kurs patologogistologicheskoi tekhniki (A Course in Pathohistological Techniques), Leningrad: Meditsina, 1969.

    Google Scholar 

  • Nagamoto-Combs, K., McNeal, D.W., Morecraft, R.J., and Combs, C.K., Prolonged microgliosis in the rhesus monkey central nervous system after traumatic brain injury, J. Neurotrauma, 2007, vol. 24, pp. 1719–1742.

    Article  PubMed  Google Scholar 

  • Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R., Cortical neurons arise in symmetricand asymmetric division zones and migrate through specific phases, Nat. Neurosci., 2004, vol. 7, pp. 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Nona, S.N., Duncan, A., Stafford, C.A., Maggs, A., Jeserich, G., and Cronly-Dillon, J.R., Myelination of regenerated axons in goldfish optic nerve by Schwann cells, J. Neurocytol., 1992, vol. 21, pp. 391–401.

    Article  CAS  PubMed  Google Scholar 

  • Nona, S.N., Stafford, C.A., Duncan, A., Cronly-Dillon, J.R., and Scholes, J., Myelin repair by Schwann cells in the regenerating goldfish visual pathway: regional patterns revealed by X-irradiation, J. Neurocytol., 1994, vol. 23, pp. 400–409.

    Article  CAS  PubMed  Google Scholar 

  • Nona, S.N., Thomlinson, A.M., and Stafford, C.A., Temporary colonization of the site of lesion by macrophages is a prelude to the arrival of regenerated axons in injured goldfish optic nerve, J. Neurocytol., 1998, vol. 27, pp. 791–803.

    Article  CAS  PubMed  Google Scholar 

  • Nona, S.N., Thomlinson, A.M., Bartlett, C.A., and Scholes, J., Schwann cells in the regenerating fish optic nerve: evidence that CNS axons, not the glia, determine when myelin formation begins, J. Neurocytol., 2000, vol. 29, pp. 285–300.

    Article  CAS  PubMed  Google Scholar 

  • Otteson, D.C. and Hitchcock, P.F., Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration, Vision Res., 2003, vol. 43, pp. 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, A.M., Marion, D.W., Botscheller, M.L., Bowen, D.M., and DeKosky, S.T., Increased transmitter amino acid concentration in human ventricular CSF after brain trauma, Neuroreport, 1994, vol. 6, pp. 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Puschina, E.V. and Obukhov, D.K., Processes of proliferation and apoptosis in the brain of the Amur sturgeon, Neurophysiology, 2011, vol. 43, no. 4, pp. 271–286.

    Article  Google Scholar 

  • Pushchina, E.V., Obukhov, D.K., and Varaksin, A.A., Structure, chemoarchitectonics and postembryonic histogenesis of a central nervous system in a teleost fish, in Teleosts: Evolutionary Development, Diversity and Behavioral Ecology, Carone, S., Ed., New York: Nova Science Publishers, Inc., 2014, pp. 97–152.

    Google Scholar 

  • Schweitzer, J., Gimnopoulos, D., Lieberoth, B.C., Pogoda, H.M., Feldner, J., Ebert, A., Schachner, M., Becker, T., and Becker, C.G., Contactin 1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish, Mol. Cell. Neurosci., 2007, vol. 35, pp. 194–207.

    Article  CAS  PubMed  Google Scholar 

  • Sîrbulescu, R.F., Ilieş, I., and Zupanc, G.K.H., Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus, J. Comp. Physiol. A, 2009, vol. 195, pp. 699–714.

    Article  Google Scholar 

  • Stenkamp, D.L., Neurogenesis in the fish retina, Int. Rev. Cytol., 2007, vol. 259, pp. 173–224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeda, A., Nakano, M., Goris, R.C., and Funakoshi, K., Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord, Neuroscience, 2008, vol. 151, pp. 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  • Thummel, R., Kassen, S.C., Enright, J.M., Nelson, C.M., Montgomery, J.E., and Hyde, D.R., Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration, Exp. Eye Res., 2008, vol. 87, pp. 433–444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vajda, F.J., Neuroprotection and neurodegenerative disease, J. Clin. Neurosci., 2002, vol. 9, pp. 4–8.

    Article  PubMed  Google Scholar 

  • Wang, S., Sdrulla, A.D., Sibio, G., Bush, G., Nofziger, D., Hicks, C., Weinmaster, G., and Barres, B.A., Notch receptor activation inhibits oligodendrocyte differentiation, Neuron, 1998, vol. 21, pp. 63–75.

    Article  PubMed  Google Scholar 

  • Wehman, A.M., Staub, W., Meyers, J.R., Raymond, P.A., and Baier, H., Genetic dissection of the zebrafish retinal stem-cell compartment, Dev. Biol., 2005, vol. 281, pp. 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Wulliman, M.F. and Puelles, L., Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains, Anat. Embryol., 1999, vol. 329, pp. 329–348.

    Article  Google Scholar 

  • Yurco, P. and Cameron, D.A., Responses of Muller glia to retinal injury in adult zebrafish, Vision Res., 2005, vol. 45, pp. 991–1002.

    Article  PubMed  Google Scholar 

  • Zhou, L.X. and Wang, Z.R., Changes in number and distribution of retinal ganglion cells after optic nerve crush in zebrafish, Shi Yan Sheng Wu Xue Bao, 2002, vol. 35, pp. 159–162.

    PubMed  Google Scholar 

  • Zikopoulos, B., Kentouri, M., and Dermon, C.R., Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata), Brain Behav. Evol., 2000, vol. 56, pp. 310–322.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G.K., Towards brain repair: insights from teleost fish, Semin. Cell Dev. Biol., 2009, vol. 20, pp. 683–690.

    Article  PubMed  Google Scholar 

  • Zupanc, G.K. and Horschke, I., Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study, J. Comp. Neurol., 1995, vol. 353, pp. 213–233.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G.K.H. and Ott, R., Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin, and type of new cells produced, Exp. Neurol., 1999, vol. 152, pp. 78–87.

    Article  Google Scholar 

  • Zupanc, G.K. and Sîrbulescu, R.F., Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish, Eur. J. Neurosci., 2011, vol. 34, pp. 917–929.

    Article  PubMed  Google Scholar 

  • Zupanc, G.K. and Sîrbulescu, R.F., Teleost fish as a model system to study successful regeneration of the central nervous system, Curr. Top. Microbiol. Immunol., 2013, vol. 367, pp. 193–233.

    CAS  PubMed  Google Scholar 

  • Zupanc, G.K., Horschke, I., Ott, R., and Rascher, G.B., Postembryonic development of the cerebellum in gymnotiform fish, J. Comp. Neurol., 1996, vol. 370, pp. 443–464.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G.K., Kompass, K.S., Horschke, I., Ott, R., and Schwarz, H., Apoptosis after injuries in the cerebellum of adult teleost fish, Exp. Neurol., 1998, vol. 152, pp. 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G.K., Hinsch, K., and Gage, F.H., Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain, J. Comp. Neurol., 2005, vol. 488, pp. 290–319.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pushchina.

Additional information

Original Russian Text © E.V. Pushchina, A.A. Varaksin, D.K. Obukhov, 2016, published in Ontogenez, 2016, Vol. 47, No. 1, pp. 15–39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushchina, E.V., Varaksin, A.A. & Obukhov, D.K. Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye. Russ J Dev Biol 47, 11–32 (2016). https://doi.org/10.1134/S1062360416010057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360416010057

Keywords

Navigation