Skip to main content

Cajal bodies and histone locus bodies: Molecular composition and function

Abstract

The review provides modern classification of evolutionarily conserved coilin-containing nuclear bodies of somatic and germ cells that is based on the characteristic features of their molecular composition and the nature of their functions. The main differences between Cajal bodies and histone locus bodies, which are involved in the biogenesis of small nuclear spliceosomal and nucleolar RNAs and in the 3′-end processing of histone precursor messenger RNA, respectively, are considered. It is shown that a significant contribution to the investigation of the diversity of coilin-containing bodies was made by the studies on the architecture of the RNA processing machinery in oocyte nuclei in a number of model organisms. The characteristics features of the molecular composition of coilin-containing bodies in growing oocyte nuclei (the so-called germinal vesicles) of vertebrates, including amphibians and birds, are described.

This is a preview of subscription content, access via your institution.

Abbreviations

snRNAs:

small nuclear RNAs

snRNP:

small nuclear ribonucleoproteins

snoRNAs:

small nucleolar RNAs

pre-mRNAs:

precursor messenger RNAs

HS:

hollow sphere

SG:

solid globe

HLB:

histone locus body

CB:

Cajal body

scaRNAs:

small Cajal body-specific RNAs

References

  1. Abbot, J., Marzluff, W.F., and Gall, J.G., The stem-loop binding protein (SLBP) is present in coiled bodies of the Xenopus germinal vesicle, Moll. Biol. Cell, 1999, vol. 10, no. 2, pp. 487–499.

    Article  Google Scholar 

  2. Andrade, L.E.C., Chan, E.K.L., Raska, I., et al., Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin, J. Exp. Med., 1991, vol. 173, no. 6, pp. 1407–1419.

    CAS  PubMed  Article  Google Scholar 

  3. Andrade, L.E.C., Tan, E.M., and Chart, E.K.L., Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 5, pp. 1947–1951.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Batalova, F.M., Stepanova, I.S., Skovorodkin, I.N., et al., Identification and dynamics of Cajal bodies in relation to karyosphere formation in scorpionfly oocytes, Chromosoma, 2005, vol. 113, no. 8, pp. 428–439.

    CAS  PubMed  Article  Google Scholar 

  5. Bellini, M., Coilin, more than a molecular marker of the Cajal (coiled) body, BioEssays, 2000, vol. 22, no. 9, pp. 861–867.

    CAS  PubMed  Article  Google Scholar 

  6. Bellini, M. and Gall, J.G., Coilin can form a complex with the U7 small nuclear ribonucleoprotein, Mol. Biol. Cell, 1998, vol. 9, pp. 2987–3001.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Bogolyubov, D. and Parfenov, V., Structure of the insect oocyte nucleus with special reference to interchromatin granule clusters and Cajal bodies, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 59–110.

    CAS  PubMed  Article  Google Scholar 

  8. Bogolyubov, D., Stepanova, I., and Parfenov, V., Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition, BioEssays, 2009, vol. 31, no. 4, pp. 400–409.

    CAS  PubMed  Article  Google Scholar 

  9. Bogolyubova, I.O. and Bogolyubov, D.S., Chapter IV: Oocyte nuclear structure during mammalian oogenesis, in Recent Advances in Germ Cells Research, Nova Biomedical, 2013, pp. 105–131.

    Google Scholar 

  10. Bongiorno-Borbone, L., De Cola, A., Vernole, P., et al., FLASH and NPAT positive but not coilin positive Cajal bodies correlate with cell ploidy, Cell Cycle, 2008, vol. 7, no. 15, pp. 2357–2367.

    CAS  PubMed  Article  Google Scholar 

  11. Broome, H.J. and Hebert, M.D., In vitro RNAse and nucleic acid binding activities implicate coilin in u snRNA processing, PLoS One, 2012, vol. 7, no. 4. doi: 10.1371/jour-nal.pone.0036300

    Google Scholar 

  12. Callan, H.G., Lampbrush Chromosomes. Molecular Biology, Biochemistry and Biohysics, Berlin: Springer-Verlag, 1986.

    Google Scholar 

  13. Callan, H.G. and Lloyd, L., Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti), Philos. Trans. R. Soc. Lond. B: Biol. Sci., 1960, vol. 243, pp. 135–219.

    Article  Google Scholar 

  14. Callan, H.G., Gall, J.G., and Murphy, C., Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes, Chromosoma, 1991, vol. 101, no. 4, pp. 245–251.

    CAS  PubMed  Article  Google Scholar 

  15. Carmo-Fonseca, M., New clues to the function of the Cajal body, EMBO Rep., 2002, vol. 3, no. 8, pp. 726–727.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Carmo-Fonseca, M., Pepperkok, R., Sproat, B.S., et al., In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells, EMBO J., 1991, vol. 10, no. 7, pp. 1863–1873.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Carmo-Fonseca, M., Pepperkok, R., Carvalho, M.T., et al., Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies, J. Cell Biol., 1992, vol. 117, no. 1, pp. 1–14.

    CAS  PubMed  Article  Google Scholar 

  18. Carmo-Fonseca, M., Ferreira, J., and Lamond, A.I., Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis-evidence that the coiled body is a kinetic nuclear structure, J. Cell Biol., 1993, vol. 120, no. 4, pp. 841–852.

    CAS  PubMed  Article  Google Scholar 

  19. Cioce, M. and Lamond, A.I., Cajal bodies: a long history of discovery, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 105–131.

    CAS  PubMed  Article  Google Scholar 

  20. Darzacq, X., Jády, B.E., Verheggen, C., et al., Cajal bodyspecific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs, EMBO J., 2002, vol. 21, no. 11, pp. 2746–2756.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Dedukh, D., Mazepa, G., Shabanov, D., et al., Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine, BMC Genetics, 2013, vol. 14, no. 26. doi: 10.1186/1471-2156-14-26

    Google Scholar 

  22. Deryusheva, S. and Gall, J.G., Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies, Mol. Biol. Cell, 2009, vol. 20, no. 24, pp. 5250–5259.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Dundr, M., Nuclear bodies: multifunctional companions of the genome, Curr. Opin. Cell Biol., 2012, vol. 24, no. 3, pp. 415–422.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Dundr, M. and Misteli, T., Functional architecture in the cell nucleus, Biochem. J., 2001, vol. 356, no. 2, pp. 297–310.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Dundr, M. and Misteli, T., Biogenesis of nuclear bodies, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 12. doi: 10.1101/cshperspect.a000711

    Google Scholar 

  26. Dundr, M., Hebert, M.D., Karpova, T.S., et al., In vivo kinetics of Cajal body components, J. Cell Biol., 2004, vol. 164, no. 6, pp. 831–842.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Ferrai, C., de Castro, I.J., Lavitas, L., et al., Gene positioning, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 6. doi: 10.1101/cshperspect.a000588

    Google Scholar 

  28. Fischer, U., Liu, Q., and Dreyfuss, G., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis, Cell, 1997, vol. 90, no. 6, pp. 1023–1029.

    CAS  PubMed  Article  Google Scholar 

  29. Gaginskaya, E.R., Functional morphology of chromosomes in the oogenesis of birds, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad: LGU, 1989.

    Google Scholar 

  30. Gaginskaya, E.R. and Gruzova, M.N., Characteristics of oogenesis in the chaffinch, Tsitologiia, 1969, vol. 9, no. 10, pp. 1241–1251.

    Google Scholar 

  31. Gaginskaya, E.R. and Gruzova, M.N., Detection of the amplified rDNA in ovarial cells of some insects and birds by hybridization in situ, Tsitologiia, 1975, vol. 17, no. 10, pp. 1132–1137.

    CAS  Google Scholar 

  32. Gaginskaya, E., Kulikova, T., and Krasikova, A., Avian lampbrush chromosomes: a powerful tool for exploration of genome expression, Cytogenet. Genome Res., 2009, vol. 124, nos. 3–4, pp. 251–267.

    CAS  PubMed  Article  Google Scholar 

  33. Galardi, S., Fatica, A., Bachi, A., et al., Purified box C/D snoRNPs are able to reproduce site-specific 2′-O-methylation of target RNA in vitro, Mol. Cell Biol., 2002, vol. 22, no. 19, pp. 6663–6668.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Gall, J.G., Cajal bodies: the first 100 years, Annu. Rev. Cell Dev. Biol., 2000, vol. 16, pp. 273–300.

    CAS  PubMed  Article  Google Scholar 

  35. Gall, J.G., Stephenson, E.C., Erba, H.P., et al., Histone genes are located at the sphere loci of newt lampbrush chromosomes, Chromosoma, 1981, vol. 84, no. 2, pp. 159–171.

    CAS  PubMed  Article  Google Scholar 

  36. Gall, J.G., Tsvetkov, A., Wu, Z., et al., Is the sphere organelle/coiled body a universal nuclear component?, Dev. Genet., 1995, vol. 16, no. 1, pp. 25–35.

    CAS  PubMed  Article  Google Scholar 

  37. Gall, J.G., Bellini, M., Wu, Z., et al., Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes, Mol. Biol. Cell, 1999, vol. 10, no. 12, pp. 4385–4402.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Gall, J.G., Wu, Z., Murphy, C., et al., Structure in the amphibian germinal vesicle, Exp. Cell Res., 2004, vol. 296, no. 1, pp. 28–34.

    CAS  PubMed  Article  Google Scholar 

  39. Greenfield, M.L., The oocyte of the domestic chicken shortly after hatching, studied by electron microscopy, Embryol. Exp. Morph., 1966, vol. 15, no. 3, pp. 297–316.

    CAS  Google Scholar 

  40. Hebert, M.D. and Matera, A.G., Self-association of coilin reveals a common theme in nuclear body localization, Mol. Biol. Cell, 2000, vol. 11, no. 12, pp. 4159–4171.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Hebert, M.D., Szymczyk, P.W., Shpargel, K.B., et al., Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein, Genes Dev., 2001, vol. 15, no. 20, pp. 2720–2729.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Hofmann, I., Schnolzer, M., Kaufmann, I., et al., Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes, Mol. Biol. Cell, 2002, vol. 13, pp. 1665–1676.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Jády, B.E. and Kiss, T., A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA, EMBO J., 2001, vol. 20, no. 3, pp. 541–551.

    PubMed Central  PubMed  Article  Google Scholar 

  44. Jády, B.E., Bertrand, E., and Kiss, T., Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal, J. Cell Biol., 2004, vol. 164, no. 5, pp. 647–652.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  45. Kaiser, T.E., Intine, R.V., and Dundr, M., De novo formation of a subnuclear body, Science, 2008, vol. 322, no. 5908, pp. 1713–1717.

    CAS  PubMed  Article  Google Scholar 

  46. Khodyuchenko, T., Gaginskaya, E., and Krasikova, A., Noncanonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus, Histochem. Cell Biol., 2012, vol. 138, no. 1, pp. 57–73.

    CAS  PubMed  Article  Google Scholar 

  47. Khutinaeva, M.A., Kropotova, E.V., and Gaginskaya, E.R., The characteristics of the morphofunctional organization of the lampbrush chromosomes from the oocytes of the rock dove, Tsitologiya, 1989, vol. 31, no. 10, pp. 1185–1192.

    CAS  Google Scholar 

  48. Kiss, A.M., Jády, B.E., Darzacq, X., et al., A Cajal body specifc pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains, Nucleic Acids Res., 2002, vol. 30, pp. 4643–4649.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. Kolb, S.J., Battle, D.J., and Dreyfuss, G., Molecular functions of the SMN complex, J. Child. Neurol., 2007, vol. 22, no. 8, pp. 990–994.

    PubMed  Article  Google Scholar 

  50. Kołowerzo, A., Smolin-ski, D.J., and Bednarska, E., Poly(A) RNA a new component of Cajal bodies, Protoplasma, 2009, vol. 236, nos. 1–4, pp. 13–19.

    PubMed  Article  CAS  Google Scholar 

  51. Kopecny-, V., Biggiogera, M., Pivko, J., et al., The cell nucleus in early bovine and caprine preimplantation embryos: fine structural cytochemistry and immunoelectron microscopy, Eur. J. Cell Biol., 1996, vol. 70, no. 4, pp. 361–372.

    CAS  PubMed  Google Scholar 

  52. Krasikova, A., Kulikova, T., Saifitdinova, A., et al., Centromeric protein bodies on avian lampbrush chromosomes contain a protein detectable with an antibody against DNA topoisomerase II, Chromosoma, 2004, vol. 113, no. 6, pp. 316–323.

    CAS  PubMed  Article  Google Scholar 

  53. Krasikova, A., Barbero, J.L., and Gaginskaya, E., Cohesion proteins are present in centromere protein bodies associated with avian lampbrush chromosomes, Chromosome Res., 2005, vol. 13, pp. 675–685.

    CAS  PubMed  Article  Google Scholar 

  54. Krasikova, A.V. and Gaginskaya, E.R., Organization of centromere regions of chromosomes in the lampbrush phase, Tsitologiya, 2010, vol. 52, no. 7, pp. 515–533.

    CAS  Google Scholar 

  55. Krasikova, A., Khodyuchenko, T., Maslova, A., et al., Threedimensional organisation of RNA-processing machinery in avian growing oocyte nucleus, Chromosome Res., 2012, vol. 20, no. 8, pp. 979–994.

    CAS  PubMed  Article  Google Scholar 

  56. Kumaran, R.I., Thakar, R., and Spector, D.L., Chromatin dynamics and gene positioning, Cell, 2008, vol. 132, no. 6, pp. 929–934.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. Lefebvre, S., Bürglen, L., Reboullet, S., et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, 1995, vol. 80, no. 1, pp. 155–165.

    CAS  PubMed  Article  Google Scholar 

  58. Lemm, I., Girard, C., Kuhn, A.N., et al., Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies, Mol. Biol. Cell, 2006, vol. 17, no. 7, pp. 3221–3231.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  59. Liu, Q. and Dreyfuss, G., A novel nuclear structure containing the survival of motor neurons protein, EMBO J., 1996, vol. 15, no. 14, pp. 3555–3365.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Liu, J.-L., Buszczak, M., and Gall, J.G., Nuclear bodies in the drosophila germinal vesicle, Chrom. Res., 2006a, vol. 14, no. 4, pp. 465–475.

    CAS  PubMed  Article  Google Scholar 

  61. Liu, J.L., Murphy, C., Buszczak, M., et al., The Drosophila melanogaster Cajal body, J. Cell Biol., 2006b, vol. 172, no. 6, pp. 875–884.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Liu, J.-L., Wu, Z., Nizami, Z., et al., Coilin is essential for Cajal body organization in Drosophila melanogaster, Mol. Biol. Cell, 2009, vol. 20, no. 6, pp. 1661–1670.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Machyna, M., Heyn, P., and Neugebauer, K.M., Cajal bodies: where form meets function, WIREs RNA, 2013, vol. 4, no. 1, pp. 17–34.

    CAS  PubMed  Article  Google Scholar 

  64. Makarova, J. A. and Kramerov, D. A., Noncoding RNAs, Biochemistry, 2007, vol. 72, no. 11, pp. 1427–1448.

    Google Scholar 

  65. Matera, A.G. and Shpargel, K.B., Pumping RNA: nuclear bodybuilding along the RNP pipeline, Curr. Opin. Cell Biol., 2006, vol. 18, no. 3, pp. 317–324.

    CAS  PubMed  Article  Google Scholar 

  66. Matera, A.G., Izaguire-Sierra, M., Praveen, K., et al., Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly?, Dev. Cell, 2009, vol. 17, no. 5, pp. 639–647.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  67. Monneron, A. and Bernhard, W., Fine structural organization of the interphase nucleus in some mammalian cells, J. Ultrastruct. Res., 1969, vol. 27, no. 3, pp. 266–288.

    CAS  PubMed  Article  Google Scholar 

  68. Morgan, G.T., Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function, Chromosome Res., 2002, vol. 10, pp. 177–200.

    CAS  PubMed  Article  Google Scholar 

  69. Morimoto, M. and Boerkoel, C.F., The role of nuclear bodies in gene expression and disease, Biology (Basel), 2013, vol. 2, no. 3, pp. 976–1033.

    Google Scholar 

  70. Morris, G.E., The Cajal body, Biochim. Biophys. Acta, 2008, vol. 1783, no. 11, pp. 2108–2115.

    CAS  PubMed  Article  Google Scholar 

  71. Navascues, J., Bengoechea, R., and Tapia, O., SUMO-1 transiently localizes to Cajal bodies in mammalian neurons, J. Struct. Biol., vol. 163, no. 2, pp. 137–146.

  72. Nizami, Z.F. and Gall, J.G., Pearls are novel Cajal body-like structures in the Xenopus germinal vesicle that are dependent on RNA pol III transcription, Chromosome Res., 2012, vol. 20, no. 8, pp. 953–969.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  73. Nizami, Z.F., Deryusheva, S., and Gall, J.G., Cajal bodies and histone locus bodies in Drosophila and Xenopus, Cold Spring Harb. Symp. Quant. Biol., 2010a, vol. 75, pp. 313–320.

    CAS  PubMed  Article  Google Scholar 

  74. Nizami, Z.F., Deryusheva, S., and Gall, J.G., The Cajal body and histone locus body, Cold Spring Harb. Perspect. Biol., 2010b. doi: 10.1101/cshperspect.a000653

    Google Scholar 

  75. Novotny, I., Blažíková, M., Staněk, D., et al., In vivo kinetics of U4/U6-U5 tri-snRNP formation in Cajal bodies, Mol. Biol. Cell, 2011, vol. 22, no. 4, pp. 513–523.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  76. Ochs, R.L., Stein, T.W., Jr., Andrade, L.E.C., et al., Formation of nuclear bodies in hepatocytes of estrogen-treated roosters, Mol. Biol. Cell, 1995, vol. 6, no. 3, pp. 345–356.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  77. Okuwaki, M., The structure and functions of NPM1/nucleophsmin/B23, a multifunctional nucleolar acidic protein, J. Biochem., 2008, vol. 143, no. 4, pp. 441–448.

    CAS  PubMed  Article  Google Scholar 

  78. Pochukalina, G.N. and Parfenov, V.N., The nucleolus in oocytes of multylayer mouse follicles: topography of fibrillarin, RNA polymerase I and coilin, Tsitologiia, 2006, vol. 48, no. 8, pp. 641–652.

    CAS  PubMed  Google Scholar 

  79. Pontes, O. and Pikaard, C.S., siRNA and miRNA processing: new functions for Cajal bodies, Curr. Opin. Genet. Dev., 2008, vol. 18, no. 2, pp. 197–203.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  80. Rajendra, T.K., Praveen, K., and Matera, A.G., Genetic analysis of nuclear bodies: from nondeterministic to deterministic order, Cold Spring Harb. Symp. Quant. Biol., 2010, vol. 75, pp. 365–374.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  81. Raška, I., Andrade, L.E.C., Ochs, R.L., et al., Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies, Exp. Cell Res., 1991, vol. 195, no. 1, pp. 27–37.

    PubMed  Article  Google Scholar 

  82. Richard, P., Darzacq, X., Bertrand, E., et al., A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs, EMBO J., 2003, vol. 22, no. 16, pp. 4283–4293.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  83. Saifitdinova, A., Derjusheva, S., Krasikova, A., et al., Lampbrush chromosomes of the chaffinch (Fringilla coelebs L.), Chromosome Res., 2003, vol. 11, pp. 99–113.

    CAS  PubMed  Article  Google Scholar 

  84. Salzler, H.R., Tatomer, D.C., Malek, P.Y., et al., A sequence in the drosophila H3-H4 promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs, Dev. Cell, 2013, vol. 24, no. 6, pp. 623–634.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  85. Schul, W., van Der Kraan, I., Matera, A.G., et al., Nuclear domains enriched in RNA 3′-processing factors associate with coiled bodies and histone genes in a cell cycledependent manner, Mol. Biol. Cell, 1999, vol. 10, no. 11, pp. 3815–3824.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  86. Semashko, M.A., Rakitina, D.V., Gonzales, I., et al., Movement protein of hordeivirus interacts in vitro and in vivo with coilin, a major structural protein of Cajal bodies, Doklady Biochem. Biophys., 2012, vol. 442, pp. 57–60.

    CAS  Article  Google Scholar 

  87. Shaw, D.J., Eggleton, P., and Young, P.J., Joining the dots: production, processing and targeting of U snRNP to nuclear bodies, Biochim. Biophys. Acta, 2008, vol. 1783, no. 11, pp. 2137–2144.

    CAS  PubMed  Article  Google Scholar 

  88. Shevtsov, S.P. and Dundr, M., Nucleation of nuclear bodies by RNA, Nat. Cell Biol., 2011, vol. 13, no. 2, pp. 167–173.

    CAS  PubMed  Article  Google Scholar 

  89. Shpargel, K.B., Ospina, J.K., Tucker, K.E., et al., Control of Cajal body number is mediated by the coilin C-terminus, J. Cell Sci., 2003, vol. 116, no. 2, pp. 303–312.

    CAS  PubMed  Article  Google Scholar 

  90. Sleeman, J., A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus, J. Cell Sci., 2007, vol. 120, no. 9, pp. 1540–1550.

    CAS  PubMed  Article  Google Scholar 

  91. Sleeman, J.E., Ajuh, P., and Lamond, A.I., snRNP protein expression enhances the formation of Cajal bodies containing p-80 coilin and SMN, J. Cell Sci., 2001, vol. 114, no. 24, pp. 4407–4419.

    CAS  PubMed  Google Scholar 

  92. Smolin-ski, D.J. and Kołowerzo, A., mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte, Chromosoma, 2012, vol. 121, no. 1, pp. 37–48.

    CAS  Article  Google Scholar 

  93. Spector, D.L., Snapshot: cellular bodies, Cell, 2006, vol. 127, no. 5, p. 1071.

    PubMed  Article  Google Scholar 

  94. Stanek, D. and Neugebauer, K.M., The Cajal body: a meeting place for spliceosomal snrnps in the nuclear maze, Chromosoma, 2006, vol. 115, no. 5, pp. 343–354.

    CAS  PubMed  Article  Google Scholar 

  95. Stanek, D., Pridalová-Hnilicová, J., Novotný, I., et al., Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell, 2008, vol. 19, no. 6, pp. 2534–2543.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  96. Stepanova, I.S., Bogolyubov, D.S., Skovorodkin, I.N., et al., Cajal bodies and interchromatin granule clusters in cricket oocytes: composition, dynamics and interactions, Cell Biol. Int., 2007, vol. 31, no. 3, pp. 203–214.

    CAS  PubMed  Article  Google Scholar 

  97. Stepanova, I.S., Bogolyubov, D.S., and Parfenov, V.N., Cajal bodies in insect oocytes. II. New data on the molecular composition of Cajal bodies in oocytes of the house cricket Acheta domesticus with special reference to interactions between Cajal bodies and interchromatin granule cluster, Tsitologiia, 2007, vol. 49, no. 1, pp. 5–20.

    CAS  PubMed  Google Scholar 

  98. Tapia, O., Bengoechea, R., Palanca, A., et al., Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy, Histochem. Cell Biol., 2012, vol. 137, no. 5, pp. 657–667.

    CAS  Article  Google Scholar 

  99. Tsvetkov, A., Alexandrova, O., Bogolyubov, D., et al., Nuclear bodies from cricket and mealworm oocytes contain splicing factors of pre-mRNA, Eur. J. Entomol., 1997, vol. 94, no. 3, pp. 393–407.

    CAS  Google Scholar 

  100. Tucker, T.E., Berciano, M.T., Jacobs, E.Y., et al., Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product, J. Cell Biol., 2001, vol. 154, no. 2, pp. 293–307.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  101. Venteicher, A.S., Abreu, E.B., Meng, Z., et al., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science, 2009, vol. 323, no. 5914, pp. 644–648.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  102. Verheggen, C., Lafontaine, D.L., Samarsky, D., et al., Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments, EMBO J., 2002, vol. 21, no. 11, pp. 2736–2745.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  103. Visa, N., Puvion-Dutilleul, F., Harper, F., et al., Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization, Exp. Cell Res., 1993, vol. 208, no. 1, pp. 19–34.

    CAS  PubMed  Article  Google Scholar 

  104. White, A.E., Burch, B.D., Yang, X.C., et al., Drosophila histone locus bodies form by hierarchical recruitment of components, J. Cell Biol., 2011, vol. 193, no. 4, pp. 677–694.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  105. Will, C.L. and Lührmann, R., Spliceosomal U snRNP biogenesis, structure and function, Curr. Opin. Cell Biol., 2001, vol. 13, no. 3, pp. 290–301.

    CAS  PubMed  Article  Google Scholar 

  106. Wu, C.H. and Gall, J.G., U7 small nuclear RNA in c snurposomes of the Xenopus germinal vesicle, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 13, pp. 6257–6259.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  107. Wu, Z., Murphy, C., and Gall, J.G., Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle, Mol. Biol. Cell, 1994, vol. 5, no. 10, pp. 1119–1127.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  108. Xie, J., Zhang, M., Zhou, T., et al., Sno/scaRNAbase: a curated database for small nucleolar and Cajal body-specific RNAs, Nucleic Acids Res., 2007, vol. 35, pp. 183–187.

    Article  Google Scholar 

  109. Xu, H., Pillai, R.S., Azzouz, T.N., et al., The C-terminal domain of coilin interacts with Sm proteins and u snRNPs, Chromosoma, 2005, vol. 114, no. 3, pp. 155–166.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  110. Yang, X.C., Sabath, I., Debski, J., et al., A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3′-end processing, Mol. Cell. Biol., 2013, vol. 33, no. 1, pp. 28–37.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  111. Zatsepina, O., Baly, C., Chebrout, M., and Debey, P., The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the Cajal (coiled) body, Dev. Biol., 2003, vol. 253, no. 1, pp. 66–83.

    CAS  PubMed  Article  Google Scholar 

  112. Zhu, Y., Tomlinson, R.L., Lukowiak, A.A., et al., Telomerase RNA accumulates in Cajal bodies in human cancer cells, Mol. Biol. Cell, 2004, vol. 15, no. 1, pp. 81–90.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  113. Zimber, A., Nguyen, Q.D., and Gespach, C., Nuclear bodies and compartments: functional roles and cellular signalling in health and disease, Cell Signal., 2004, vol. 16, no. 10, pp. 1085–1104.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. A. Khodyuchenko.

Additional information

Original Russian Text © T.A. Khodyuchenko, A.V. Krasikova, 2014, published in Ontogenez, 2014, Vol. 45, No. 6, pp. 363–379.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodyuchenko, T.A., Krasikova, A.V. Cajal bodies and histone locus bodies: Molecular composition and function. Russ J Dev Biol 45, 297–312 (2014). https://doi.org/10.1134/S106236041406006X

Download citation

Keywords

  • coilin
  • coilin-containing bodies
  • oogenesis
  • histone locus bodies
  • Cajal bodies
  • nuclear bodies
  • oocyte nucleus