Russian Journal of Developmental Biology

, Volume 45, Issue 6, pp 297–312 | Cite as

Cajal bodies and histone locus bodies: Molecular composition and function



The review provides modern classification of evolutionarily conserved coilin-containing nuclear bodies of somatic and germ cells that is based on the characteristic features of their molecular composition and the nature of their functions. The main differences between Cajal bodies and histone locus bodies, which are involved in the biogenesis of small nuclear spliceosomal and nucleolar RNAs and in the 3′-end processing of histone precursor messenger RNA, respectively, are considered. It is shown that a significant contribution to the investigation of the diversity of coilin-containing bodies was made by the studies on the architecture of the RNA processing machinery in oocyte nuclei in a number of model organisms. The characteristics features of the molecular composition of coilin-containing bodies in growing oocyte nuclei (the so-called germinal vesicles) of vertebrates, including amphibians and birds, are described.


coilin coilin-containing bodies oogenesis histone locus bodies Cajal bodies nuclear bodies oocyte nucleus 



small nuclear RNAs


small nuclear ribonucleoproteins


small nucleolar RNAs


precursor messenger RNAs


hollow sphere


solid globe


histone locus body


Cajal body


small Cajal body-specific RNAs


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, J., Marzluff, W.F., and Gall, J.G., The stem-loop binding protein (SLBP) is present in coiled bodies of the Xenopus germinal vesicle, Moll. Biol. Cell, 1999, vol. 10, no. 2, pp. 487–499.CrossRefGoogle Scholar
  2. Andrade, L.E.C., Chan, E.K.L., Raska, I., et al., Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin, J. Exp. Med., 1991, vol. 173, no. 6, pp. 1407–1419.PubMedCrossRefGoogle Scholar
  3. Andrade, L.E.C., Tan, E.M., and Chart, E.K.L., Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 5, pp. 1947–1951.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Batalova, F.M., Stepanova, I.S., Skovorodkin, I.N., et al., Identification and dynamics of Cajal bodies in relation to karyosphere formation in scorpionfly oocytes, Chromosoma, 2005, vol. 113, no. 8, pp. 428–439.PubMedCrossRefGoogle Scholar
  5. Bellini, M., Coilin, more than a molecular marker of the Cajal (coiled) body, BioEssays, 2000, vol. 22, no. 9, pp. 861–867.PubMedCrossRefGoogle Scholar
  6. Bellini, M. and Gall, J.G., Coilin can form a complex with the U7 small nuclear ribonucleoprotein, Mol. Biol. Cell, 1998, vol. 9, pp. 2987–3001.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bogolyubov, D. and Parfenov, V., Structure of the insect oocyte nucleus with special reference to interchromatin granule clusters and Cajal bodies, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 59–110.PubMedCrossRefGoogle Scholar
  8. Bogolyubov, D., Stepanova, I., and Parfenov, V., Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition, BioEssays, 2009, vol. 31, no. 4, pp. 400–409.PubMedCrossRefGoogle Scholar
  9. Bogolyubova, I.O. and Bogolyubov, D.S., Chapter IV: Oocyte nuclear structure during mammalian oogenesis, in Recent Advances in Germ Cells Research, Nova Biomedical, 2013, pp. 105–131.Google Scholar
  10. Bongiorno-Borbone, L., De Cola, A., Vernole, P., et al., FLASH and NPAT positive but not coilin positive Cajal bodies correlate with cell ploidy, Cell Cycle, 2008, vol. 7, no. 15, pp. 2357–2367.PubMedCrossRefGoogle Scholar
  11. Broome, H.J. and Hebert, M.D., In vitro RNAse and nucleic acid binding activities implicate coilin in u snRNA processing, PLoS One, 2012, vol. 7, no. 4. doi: 10.1371/jour-nal.pone.0036300Google Scholar
  12. Callan, H.G., Lampbrush Chromosomes. Molecular Biology, Biochemistry and Biohysics, Berlin: Springer-Verlag, 1986.Google Scholar
  13. Callan, H.G. and Lloyd, L., Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti), Philos. Trans. R. Soc. Lond. B: Biol. Sci., 1960, vol. 243, pp. 135–219.CrossRefGoogle Scholar
  14. Callan, H.G., Gall, J.G., and Murphy, C., Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes, Chromosoma, 1991, vol. 101, no. 4, pp. 245–251.PubMedCrossRefGoogle Scholar
  15. Carmo-Fonseca, M., New clues to the function of the Cajal body, EMBO Rep., 2002, vol. 3, no. 8, pp. 726–727.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carmo-Fonseca, M., Pepperkok, R., Sproat, B.S., et al., In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells, EMBO J., 1991, vol. 10, no. 7, pp. 1863–1873.PubMedCentralPubMedGoogle Scholar
  17. Carmo-Fonseca, M., Pepperkok, R., Carvalho, M.T., et al., Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies, J. Cell Biol., 1992, vol. 117, no. 1, pp. 1–14.PubMedCrossRefGoogle Scholar
  18. Carmo-Fonseca, M., Ferreira, J., and Lamond, A.I., Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis-evidence that the coiled body is a kinetic nuclear structure, J. Cell Biol., 1993, vol. 120, no. 4, pp. 841–852.PubMedCrossRefGoogle Scholar
  19. Cioce, M. and Lamond, A.I., Cajal bodies: a long history of discovery, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 105–131.PubMedCrossRefGoogle Scholar
  20. Darzacq, X., Jády, B.E., Verheggen, C., et al., Cajal bodyspecific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs, EMBO J., 2002, vol. 21, no. 11, pp. 2746–2756.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dedukh, D., Mazepa, G., Shabanov, D., et al., Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine, BMC Genetics, 2013, vol. 14, no. 26. doi: 10.1186/1471-2156-14-26Google Scholar
  22. Deryusheva, S. and Gall, J.G., Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies, Mol. Biol. Cell, 2009, vol. 20, no. 24, pp. 5250–5259.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dundr, M., Nuclear bodies: multifunctional companions of the genome, Curr. Opin. Cell Biol., 2012, vol. 24, no. 3, pp. 415–422.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Dundr, M. and Misteli, T., Functional architecture in the cell nucleus, Biochem. J., 2001, vol. 356, no. 2, pp. 297–310.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dundr, M. and Misteli, T., Biogenesis of nuclear bodies, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 12. doi: 10.1101/cshperspect.a000711Google Scholar
  26. Dundr, M., Hebert, M.D., Karpova, T.S., et al., In vivo kinetics of Cajal body components, J. Cell Biol., 2004, vol. 164, no. 6, pp. 831–842.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ferrai, C., de Castro, I.J., Lavitas, L., et al., Gene positioning, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 6. doi: 10.1101/cshperspect.a000588Google Scholar
  28. Fischer, U., Liu, Q., and Dreyfuss, G., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis, Cell, 1997, vol. 90, no. 6, pp. 1023–1029.PubMedCrossRefGoogle Scholar
  29. Gaginskaya, E.R., Functional morphology of chromosomes in the oogenesis of birds, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad: LGU, 1989.Google Scholar
  30. Gaginskaya, E.R. and Gruzova, M.N., Characteristics of oogenesis in the chaffinch, Tsitologiia, 1969, vol. 9, no. 10, pp. 1241–1251.Google Scholar
  31. Gaginskaya, E.R. and Gruzova, M.N., Detection of the amplified rDNA in ovarial cells of some insects and birds by hybridization in situ, Tsitologiia, 1975, vol. 17, no. 10, pp. 1132–1137.Google Scholar
  32. Gaginskaya, E., Kulikova, T., and Krasikova, A., Avian lampbrush chromosomes: a powerful tool for exploration of genome expression, Cytogenet. Genome Res., 2009, vol. 124, nos. 3–4, pp. 251–267.PubMedCrossRefGoogle Scholar
  33. Galardi, S., Fatica, A., Bachi, A., et al., Purified box C/D snoRNPs are able to reproduce site-specific 2′-O-methylation of target RNA in vitro, Mol. Cell Biol., 2002, vol. 22, no. 19, pp. 6663–6668.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gall, J.G., Cajal bodies: the first 100 years, Annu. Rev. Cell Dev. Biol., 2000, vol. 16, pp. 273–300.PubMedCrossRefGoogle Scholar
  35. Gall, J.G., Stephenson, E.C., Erba, H.P., et al., Histone genes are located at the sphere loci of newt lampbrush chromosomes, Chromosoma, 1981, vol. 84, no. 2, pp. 159–171.PubMedCrossRefGoogle Scholar
  36. Gall, J.G., Tsvetkov, A., Wu, Z., et al., Is the sphere organelle/coiled body a universal nuclear component?, Dev. Genet., 1995, vol. 16, no. 1, pp. 25–35.PubMedCrossRefGoogle Scholar
  37. Gall, J.G., Bellini, M., Wu, Z., et al., Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes, Mol. Biol. Cell, 1999, vol. 10, no. 12, pp. 4385–4402.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Gall, J.G., Wu, Z., Murphy, C., et al., Structure in the amphibian germinal vesicle, Exp. Cell Res., 2004, vol. 296, no. 1, pp. 28–34.PubMedCrossRefGoogle Scholar
  39. Greenfield, M.L., The oocyte of the domestic chicken shortly after hatching, studied by electron microscopy, Embryol. Exp. Morph., 1966, vol. 15, no. 3, pp. 297–316.Google Scholar
  40. Hebert, M.D. and Matera, A.G., Self-association of coilin reveals a common theme in nuclear body localization, Mol. Biol. Cell, 2000, vol. 11, no. 12, pp. 4159–4171.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Hebert, M.D., Szymczyk, P.W., Shpargel, K.B., et al., Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein, Genes Dev., 2001, vol. 15, no. 20, pp. 2720–2729.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hofmann, I., Schnolzer, M., Kaufmann, I., et al., Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes, Mol. Biol. Cell, 2002, vol. 13, pp. 1665–1676.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Jády, B.E. and Kiss, T., A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA, EMBO J., 2001, vol. 20, no. 3, pp. 541–551.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Jády, B.E., Bertrand, E., and Kiss, T., Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal, J. Cell Biol., 2004, vol. 164, no. 5, pp. 647–652.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Kaiser, T.E., Intine, R.V., and Dundr, M., De novo formation of a subnuclear body, Science, 2008, vol. 322, no. 5908, pp. 1713–1717.PubMedCrossRefGoogle Scholar
  46. Khodyuchenko, T., Gaginskaya, E., and Krasikova, A., Noncanonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus, Histochem. Cell Biol., 2012, vol. 138, no. 1, pp. 57–73.PubMedCrossRefGoogle Scholar
  47. Khutinaeva, M.A., Kropotova, E.V., and Gaginskaya, E.R., The characteristics of the morphofunctional organization of the lampbrush chromosomes from the oocytes of the rock dove, Tsitologiya, 1989, vol. 31, no. 10, pp. 1185–1192.Google Scholar
  48. Kiss, A.M., Jády, B.E., Darzacq, X., et al., A Cajal body specifc pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains, Nucleic Acids Res., 2002, vol. 30, pp. 4643–4649.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kolb, S.J., Battle, D.J., and Dreyfuss, G., Molecular functions of the SMN complex, J. Child. Neurol., 2007, vol. 22, no. 8, pp. 990–994.PubMedCrossRefGoogle Scholar
  50. Kołowerzo, A., Smolin-ski, D.J., and Bednarska, E., Poly(A) RNA a new component of Cajal bodies, Protoplasma, 2009, vol. 236, nos. 1–4, pp. 13–19.PubMedCrossRefGoogle Scholar
  51. Kopecny-, V., Biggiogera, M., Pivko, J., et al., The cell nucleus in early bovine and caprine preimplantation embryos: fine structural cytochemistry and immunoelectron microscopy, Eur. J. Cell Biol., 1996, vol. 70, no. 4, pp. 361–372.PubMedGoogle Scholar
  52. Krasikova, A., Kulikova, T., Saifitdinova, A., et al., Centromeric protein bodies on avian lampbrush chromosomes contain a protein detectable with an antibody against DNA topoisomerase II, Chromosoma, 2004, vol. 113, no. 6, pp. 316–323.PubMedCrossRefGoogle Scholar
  53. Krasikova, A., Barbero, J.L., and Gaginskaya, E., Cohesion proteins are present in centromere protein bodies associated with avian lampbrush chromosomes, Chromosome Res., 2005, vol. 13, pp. 675–685.PubMedCrossRefGoogle Scholar
  54. Krasikova, A.V. and Gaginskaya, E.R., Organization of centromere regions of chromosomes in the lampbrush phase, Tsitologiya, 2010, vol. 52, no. 7, pp. 515–533.Google Scholar
  55. Krasikova, A., Khodyuchenko, T., Maslova, A., et al., Threedimensional organisation of RNA-processing machinery in avian growing oocyte nucleus, Chromosome Res., 2012, vol. 20, no. 8, pp. 979–994.PubMedCrossRefGoogle Scholar
  56. Kumaran, R.I., Thakar, R., and Spector, D.L., Chromatin dynamics and gene positioning, Cell, 2008, vol. 132, no. 6, pp. 929–934.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lefebvre, S., Bürglen, L., Reboullet, S., et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, 1995, vol. 80, no. 1, pp. 155–165.PubMedCrossRefGoogle Scholar
  58. Lemm, I., Girard, C., Kuhn, A.N., et al., Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies, Mol. Biol. Cell, 2006, vol. 17, no. 7, pp. 3221–3231.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Liu, Q. and Dreyfuss, G., A novel nuclear structure containing the survival of motor neurons protein, EMBO J., 1996, vol. 15, no. 14, pp. 3555–3365.PubMedCentralPubMedGoogle Scholar
  60. Liu, J.-L., Buszczak, M., and Gall, J.G., Nuclear bodies in the drosophila germinal vesicle, Chrom. Res., 2006a, vol. 14, no. 4, pp. 465–475.PubMedCrossRefGoogle Scholar
  61. Liu, J.L., Murphy, C., Buszczak, M., et al., The Drosophila melanogaster Cajal body, J. Cell Biol., 2006b, vol. 172, no. 6, pp. 875–884.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Liu, J.-L., Wu, Z., Nizami, Z., et al., Coilin is essential for Cajal body organization in Drosophila melanogaster, Mol. Biol. Cell, 2009, vol. 20, no. 6, pp. 1661–1670.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Machyna, M., Heyn, P., and Neugebauer, K.M., Cajal bodies: where form meets function, WIREs RNA, 2013, vol. 4, no. 1, pp. 17–34.PubMedCrossRefGoogle Scholar
  64. Makarova, J. A. and Kramerov, D. A., Noncoding RNAs, Biochemistry, 2007, vol. 72, no. 11, pp. 1427–1448.Google Scholar
  65. Matera, A.G. and Shpargel, K.B., Pumping RNA: nuclear bodybuilding along the RNP pipeline, Curr. Opin. Cell Biol., 2006, vol. 18, no. 3, pp. 317–324.PubMedCrossRefGoogle Scholar
  66. Matera, A.G., Izaguire-Sierra, M., Praveen, K., et al., Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly?, Dev. Cell, 2009, vol. 17, no. 5, pp. 639–647.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Monneron, A. and Bernhard, W., Fine structural organization of the interphase nucleus in some mammalian cells, J. Ultrastruct. Res., 1969, vol. 27, no. 3, pp. 266–288.PubMedCrossRefGoogle Scholar
  68. Morgan, G.T., Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function, Chromosome Res., 2002, vol. 10, pp. 177–200.PubMedCrossRefGoogle Scholar
  69. Morimoto, M. and Boerkoel, C.F., The role of nuclear bodies in gene expression and disease, Biology (Basel), 2013, vol. 2, no. 3, pp. 976–1033.Google Scholar
  70. Morris, G.E., The Cajal body, Biochim. Biophys. Acta, 2008, vol. 1783, no. 11, pp. 2108–2115.PubMedCrossRefGoogle Scholar
  71. Navascues, J., Bengoechea, R., and Tapia, O., SUMO-1 transiently localizes to Cajal bodies in mammalian neurons, J. Struct. Biol., vol. 163, no. 2, pp. 137–146.Google Scholar
  72. Nizami, Z.F. and Gall, J.G., Pearls are novel Cajal body-like structures in the Xenopus germinal vesicle that are dependent on RNA pol III transcription, Chromosome Res., 2012, vol. 20, no. 8, pp. 953–969.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Nizami, Z.F., Deryusheva, S., and Gall, J.G., Cajal bodies and histone locus bodies in Drosophila and Xenopus, Cold Spring Harb. Symp. Quant. Biol., 2010a, vol. 75, pp. 313–320.PubMedCrossRefGoogle Scholar
  74. Nizami, Z.F., Deryusheva, S., and Gall, J.G., The Cajal body and histone locus body, Cold Spring Harb. Perspect. Biol., 2010b. doi: 10.1101/cshperspect.a000653Google Scholar
  75. Novotny, I., Blažíková, M., Staněk, D., et al., In vivo kinetics of U4/U6-U5 tri-snRNP formation in Cajal bodies, Mol. Biol. Cell, 2011, vol. 22, no. 4, pp. 513–523.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Ochs, R.L., Stein, T.W., Jr., Andrade, L.E.C., et al., Formation of nuclear bodies in hepatocytes of estrogen-treated roosters, Mol. Biol. Cell, 1995, vol. 6, no. 3, pp. 345–356.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Okuwaki, M., The structure and functions of NPM1/nucleophsmin/B23, a multifunctional nucleolar acidic protein, J. Biochem., 2008, vol. 143, no. 4, pp. 441–448.PubMedCrossRefGoogle Scholar
  78. Pochukalina, G.N. and Parfenov, V.N., The nucleolus in oocytes of multylayer mouse follicles: topography of fibrillarin, RNA polymerase I and coilin, Tsitologiia, 2006, vol. 48, no. 8, pp. 641–652.PubMedGoogle Scholar
  79. Pontes, O. and Pikaard, C.S., siRNA and miRNA processing: new functions for Cajal bodies, Curr. Opin. Genet. Dev., 2008, vol. 18, no. 2, pp. 197–203.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Rajendra, T.K., Praveen, K., and Matera, A.G., Genetic analysis of nuclear bodies: from nondeterministic to deterministic order, Cold Spring Harb. Symp. Quant. Biol., 2010, vol. 75, pp. 365–374.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Raška, I., Andrade, L.E.C., Ochs, R.L., et al., Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies, Exp. Cell Res., 1991, vol. 195, no. 1, pp. 27–37.PubMedCrossRefGoogle Scholar
  82. Richard, P., Darzacq, X., Bertrand, E., et al., A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs, EMBO J., 2003, vol. 22, no. 16, pp. 4283–4293.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Saifitdinova, A., Derjusheva, S., Krasikova, A., et al., Lampbrush chromosomes of the chaffinch (Fringilla coelebs L.), Chromosome Res., 2003, vol. 11, pp. 99–113.PubMedCrossRefGoogle Scholar
  84. Salzler, H.R., Tatomer, D.C., Malek, P.Y., et al., A sequence in the drosophila H3-H4 promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs, Dev. Cell, 2013, vol. 24, no. 6, pp. 623–634.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Schul, W., van Der Kraan, I., Matera, A.G., et al., Nuclear domains enriched in RNA 3′-processing factors associate with coiled bodies and histone genes in a cell cycledependent manner, Mol. Biol. Cell, 1999, vol. 10, no. 11, pp. 3815–3824.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Semashko, M.A., Rakitina, D.V., Gonzales, I., et al., Movement protein of hordeivirus interacts in vitro and in vivo with coilin, a major structural protein of Cajal bodies, Doklady Biochem. Biophys., 2012, vol. 442, pp. 57–60.CrossRefGoogle Scholar
  87. Shaw, D.J., Eggleton, P., and Young, P.J., Joining the dots: production, processing and targeting of U snRNP to nuclear bodies, Biochim. Biophys. Acta, 2008, vol. 1783, no. 11, pp. 2137–2144.PubMedCrossRefGoogle Scholar
  88. Shevtsov, S.P. and Dundr, M., Nucleation of nuclear bodies by RNA, Nat. Cell Biol., 2011, vol. 13, no. 2, pp. 167–173.PubMedCrossRefGoogle Scholar
  89. Shpargel, K.B., Ospina, J.K., Tucker, K.E., et al., Control of Cajal body number is mediated by the coilin C-terminus, J. Cell Sci., 2003, vol. 116, no. 2, pp. 303–312.PubMedCrossRefGoogle Scholar
  90. Sleeman, J., A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus, J. Cell Sci., 2007, vol. 120, no. 9, pp. 1540–1550.PubMedCrossRefGoogle Scholar
  91. Sleeman, J.E., Ajuh, P., and Lamond, A.I., snRNP protein expression enhances the formation of Cajal bodies containing p-80 coilin and SMN, J. Cell Sci., 2001, vol. 114, no. 24, pp. 4407–4419.PubMedGoogle Scholar
  92. Smolin-ski, D.J. and Kołowerzo, A., mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte, Chromosoma, 2012, vol. 121, no. 1, pp. 37–48.CrossRefGoogle Scholar
  93. Spector, D.L., Snapshot: cellular bodies, Cell, 2006, vol. 127, no. 5, p. 1071.PubMedCrossRefGoogle Scholar
  94. Stanek, D. and Neugebauer, K.M., The Cajal body: a meeting place for spliceosomal snrnps in the nuclear maze, Chromosoma, 2006, vol. 115, no. 5, pp. 343–354.PubMedCrossRefGoogle Scholar
  95. Stanek, D., Pridalová-Hnilicová, J., Novotný, I., et al., Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell, 2008, vol. 19, no. 6, pp. 2534–2543.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Stepanova, I.S., Bogolyubov, D.S., Skovorodkin, I.N., et al., Cajal bodies and interchromatin granule clusters in cricket oocytes: composition, dynamics and interactions, Cell Biol. Int., 2007, vol. 31, no. 3, pp. 203–214.PubMedCrossRefGoogle Scholar
  97. Stepanova, I.S., Bogolyubov, D.S., and Parfenov, V.N., Cajal bodies in insect oocytes. II. New data on the molecular composition of Cajal bodies in oocytes of the house cricket Acheta domesticus with special reference to interactions between Cajal bodies and interchromatin granule cluster, Tsitologiia, 2007, vol. 49, no. 1, pp. 5–20.PubMedGoogle Scholar
  98. Tapia, O., Bengoechea, R., Palanca, A., et al., Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy, Histochem. Cell Biol., 2012, vol. 137, no. 5, pp. 657–667.CrossRefGoogle Scholar
  99. Tsvetkov, A., Alexandrova, O., Bogolyubov, D., et al., Nuclear bodies from cricket and mealworm oocytes contain splicing factors of pre-mRNA, Eur. J. Entomol., 1997, vol. 94, no. 3, pp. 393–407.Google Scholar
  100. Tucker, T.E., Berciano, M.T., Jacobs, E.Y., et al., Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product, J. Cell Biol., 2001, vol. 154, no. 2, pp. 293–307.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Venteicher, A.S., Abreu, E.B., Meng, Z., et al., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science, 2009, vol. 323, no. 5914, pp. 644–648.PubMedCentralPubMedCrossRefGoogle Scholar
  102. Verheggen, C., Lafontaine, D.L., Samarsky, D., et al., Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments, EMBO J., 2002, vol. 21, no. 11, pp. 2736–2745.PubMedCentralPubMedCrossRefGoogle Scholar
  103. Visa, N., Puvion-Dutilleul, F., Harper, F., et al., Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization, Exp. Cell Res., 1993, vol. 208, no. 1, pp. 19–34.PubMedCrossRefGoogle Scholar
  104. White, A.E., Burch, B.D., Yang, X.C., et al., Drosophila histone locus bodies form by hierarchical recruitment of components, J. Cell Biol., 2011, vol. 193, no. 4, pp. 677–694.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Will, C.L. and Lührmann, R., Spliceosomal U snRNP biogenesis, structure and function, Curr. Opin. Cell Biol., 2001, vol. 13, no. 3, pp. 290–301.PubMedCrossRefGoogle Scholar
  106. Wu, C.H. and Gall, J.G., U7 small nuclear RNA in c snurposomes of the Xenopus germinal vesicle, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 13, pp. 6257–6259.PubMedCentralPubMedCrossRefGoogle Scholar
  107. Wu, Z., Murphy, C., and Gall, J.G., Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle, Mol. Biol. Cell, 1994, vol. 5, no. 10, pp. 1119–1127.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Xie, J., Zhang, M., Zhou, T., et al., Sno/scaRNAbase: a curated database for small nucleolar and Cajal body-specific RNAs, Nucleic Acids Res., 2007, vol. 35, pp. 183–187.CrossRefGoogle Scholar
  109. Xu, H., Pillai, R.S., Azzouz, T.N., et al., The C-terminal domain of coilin interacts with Sm proteins and u snRNPs, Chromosoma, 2005, vol. 114, no. 3, pp. 155–166.PubMedCentralPubMedCrossRefGoogle Scholar
  110. Yang, X.C., Sabath, I., Debski, J., et al., A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3′-end processing, Mol. Cell. Biol., 2013, vol. 33, no. 1, pp. 28–37.PubMedCentralPubMedCrossRefGoogle Scholar
  111. Zatsepina, O., Baly, C., Chebrout, M., and Debey, P., The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the Cajal (coiled) body, Dev. Biol., 2003, vol. 253, no. 1, pp. 66–83.PubMedCrossRefGoogle Scholar
  112. Zhu, Y., Tomlinson, R.L., Lukowiak, A.A., et al., Telomerase RNA accumulates in Cajal bodies in human cancer cells, Mol. Biol. Cell, 2004, vol. 15, no. 1, pp. 81–90.PubMedCentralPubMedCrossRefGoogle Scholar
  113. Zimber, A., Nguyen, Q.D., and Gespach, C., Nuclear bodies and compartments: functional roles and cellular signalling in health and disease, Cell Signal., 2004, vol. 16, no. 10, pp. 1085–1104.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations