Skip to main content
Log in

Role of hydration in ovulation of common frog oocytes in vitro

  • Gametogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Stimulation of ovulation of the common frog Rana temporaria oocytes with homologous pituitary extract caused an increase in their volume. Factors that are known to inhibit hydration in teleostean oocytes (potassium-free Ringer solution and inhibitor of Na+,K+-ATPase—ouabain), as well as aquaporin inhibitors (mercuric chloride and methylmethanethiosulphonate) inhibited also homologous pituitary extract-induced volume increase in follicle-enclosed oocytes and led to reduced percentage of ovulated oocytes. Volume of denuded oocytes remained unchanged in the course of maturation when exposed to progesterone or other treatments. The data obtained suggest that stimulation of oocyte ovulation in the common frog caused an increase in their hydration that is necessary for their ovulation but this did not occur in denuded cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agre, P., King, L.S., Yasui, M., et al., Aquaporin water channels-from atomic structure to clinical medicine, J. Physiol., 2002, vol. 542, pp. 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, I.L., LaBadie, D.R., Hunter, K.E., and Hazlewood, C.F., Changes in water proton relaxation times and in nuclear to cytoplasmic element gradients during meiotic maturation of Xenopus oocytes, J. Cell Physiol., 1983, vol. 116, pp. 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Capurro, C., Ford, P., Ibarra, C., et al., Water permeability properties of the ovarian oocytes from Bufo arenarum and Xenopus laevis: a comparative study, J. Membr. Biol., 1994, vol. 138, pp. 51–57.

    Google Scholar 

  • Cerda, J.L., Petrino, T.R., and Wallace, R.A., Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation, Dev. Biol., 1993, vol. 160, pp. 228–235.

    Article  PubMed  CAS  Google Scholar 

  • Cerda, J., Fabra, M., and Raldua, D., Physiological and molecular basis of fish oocyte hydration, in The Fish Oocyte, Babin, P.J., et al., Eds., Netherlands: Springer, 2007, pp. 349–396.

    Chapter  Google Scholar 

  • Chaube, R., Chauvigne-, F., Tingaud-Sequeira, A., et al., Molecular and functional characterization of catfish (Heteropneustes fossilis) aquaporin-1b: changes in expression during ovarian development and hormoneinduced follicular maturation, Gen. Comp. Endocrinol., 2011, vol. 170, pp. 162–171.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, H.P. and Grant, F.B., Gonadal hydration of carp (Cyprinus carpio) and goldfish (Carassius auratus) after injections of pituitary extracts, Zoologica, 1964, vol. 49, pp. 193–210.

    CAS  Google Scholar 

  • Craik, J.C.A. and Harvey, S.M., The causes of buoyancy in egg of marine teleosts, J. Mar. Biol. Assoc., 1987, vol. 67, pp. 169–182.

    Article  Google Scholar 

  • Dettlaff, T.A., Development of organization of a mature egg in amphibians and fish in the final stages of oogenesis during maturing, in Sovremennye problemy oogeneza (Modern Problems of Oogenesis), Mitskevich, M.S. and Dettlaff, T.A., Eds., Moscow: Nauka, 1977, pp. 5–50.

    Google Scholar 

  • Fabra, M., Raldua, D., Power, D.M., et al., Marine fish egg hydration is aquaporin-mediated, Science, 2005, vol. 307, p. 545.

  • Fabra, M., Raldua, D., Bozzo, M., et al., Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption, Dev. Biol., 2006, vol. 295, pp. 250–262.

    Article  PubMed  CAS  Google Scholar 

  • Ford, J.K., Amodeo, G., Capurro, C., et al., Progesterone inhibition of water permeability in Bufo arenarum oocytes and urinary blander, Am. J. Physiol., 1996, vol. 270, pp. F880–F885.

    PubMed  CAS  Google Scholar 

  • Gupta, R.K., Kostellow, A.B., and Morrill, G.A., NMR studies of intracellular sodium ions in amphibian oocytes, ovulated eggs, and early embryos, J. Biol. Chem., 1985, vol. 260, pp. 9203–9208.

    PubMed  CAS  Google Scholar 

  • Hirose, K., Hirano, T., and Ishida, R., Effects of salmon gonadotropin on ovulation in ayu, Plecoglossus altivelis, with special reference to water balance, Comp. Biochem. Physiol., 1974, vol. 47A, pp. 283–289.

    Google Scholar 

  • Hirose, K., Endocrine control of ovulation in medaka (Oryzias latipes) and ayu (Plecoglossus altivelis), J. Fish. Res., 1976, vol. 33, pp. 989–994.

    Article  CAS  Google Scholar 

  • Kagawa, H., Horiuchi, Y., Kasuga, Y., and Kishi, T., Oocyte hydration in the Japanese eel (Anguilla japonica) during meiosis resumption and ovulation, J. Exp. Zool. Part A. Ecol. Gen. Physiol., 2009, vol. 311A, pp. 752–762.

    Article  Google Scholar 

  • Kagawa, H., Kishi, T., Gen, K., et al., Expression and localization of atlantic croaker and spotted seatrout oocytes during final maturation, Reprod. Biol. Endocrinol., 2011, vol. 9, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Kida, H.T., Miyoshi, K., Manabe, N., et al., Roles of aquaporin-3 water channels in volume-regulatory water flow in a human epithelial cell line, J. Membr. Biol., 2005, vol. 208, pp. 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Kurbannazarova, R.S., Tashmukhamedov, B.A., and Sabirov, R.Z., Osmotic water permeability and regulatory volume decrease of rat thymocytes, Gen. Physiol. Biophys., 2003, vol. 22, pp. 221–232.

    PubMed  CAS  Google Scholar 

  • LaFleur, G.J., Jr. and Thomas, P., Evidence for a role of Na+,K+-ATPase in the hydration of atlantic croaker and spotted sea trout oocytes during final maturation, J. Exp Zool., 1991, vol. 258, pp. 126–136.

    Article  PubMed  CAS  Google Scholar 

  • Lau, Y.T., Reynhout, J.K., and Horowitz, S.B., Regional water changes during oocyte meiotic maturation: evidence of ooplasmic segregation, Dev. Biol., 1984, vol. 104, pp. 106–110.

    Article  PubMed  CAS  Google Scholar 

  • De Luque, O., Hunter, A.S., and Hunter, F.R., Osmotic studies of amphibian eggs. III. Ovulated eggs, Biol. Bull., 1961, vol. 121, pp. 497–506.

    Article  Google Scholar 

  • Masui, Y. and Clarke, H.J., Oocyte maturation, Int. Rev. Cytol., 1979, vol. 57, pp. 185–282.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, R., Greeley, M.S., and Wallace, R.A., The influence of yolk protein proteolysis on hydration in oocytes of Fundulus heteroclitus, Dev. Growth. Differ., 1989, vol. 31, pp. 475–483.

    Article  CAS  Google Scholar 

  • Mild, K.H. and Lovtrup, S., Movement and structure of water in animal cells. Ideas and experiments, Biochem. Biophys. Acta, 1985, vol. 822, pp. 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Milla, S., Jalabert, B., Rime, H., et al., Hydration of rainbow trout oocyte during meiotic maturation and in vitro regulation by 17,20β-dihydroxy-4-pregnen-3-one and cortisol, J. Exp. Biol., 2006, vol. 209, pp. 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  • Morrill, G.A., Kostellow, A., and Murphy, J.B., Role of Na+, K+-ATPase in early embryonic development, Ann. N.Y. Acad. Sci., 1974, vol. 242, pp. 543–559.

    Article  PubMed  CAS  Google Scholar 

  • Morrill, G.A., Ziegler, D., and Zabrenetzky, V.S., An analysis of transport, exchange, and binding of sodium and potassium in isolated amphibian follicles, J. Cell Sci., 1977, vol. 26, pp. 311–322.

    PubMed  CAS  Google Scholar 

  • Morrill, G.A. and Ziegler, D., Na+ and K+ uptake and exchange by the amphibian oocyte during the first meiotic division, Dev. Biol., 1980, vol. 74, pp. 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Nagahama, Y., Endocrine control of oocyte maturation in teleosts, Prog. Clin. Biol. Res., 1990, vol. 342, pp. 385–392.

    PubMed  CAS  Google Scholar 

  • Pendergrass, P. and Schroeder, P., The ultrastructure of the thecal cell of the teleost, Oryzias latipes, during ovulation in vitro, J. Reprod. Fertil., 1976, vol. 47, pp. 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Rudneva, T.B., 1968 (cited by Dettlaff, T.A., 1977).

  • Schreiber, R., Greger, R., Nitschke, R., et al., Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes, Pflügers Archiv, 1997, vol. 434, pp. 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, R., Pavenstadt, H., Greger, R., et al., Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator, FEBS Lett., 2000, vol. 475, pp. 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Selman, K., Wallace, R.A., Sarka, A., and Qi, X., Stages of oocyte development in zebrafish, Brachidanio rerio, J. Morphol., 1993, vol. 218, pp. 203–224.

    Article  Google Scholar 

  • Skoblina, M.N. and Kondrat’eva, O.T., In vitro maturation of the oocytes of the common frog with and without follicular envelopes as affected by cholesterol, Ontogenez, 1983, vol. 14, pp. 484–490.

    PubMed  CAS  Google Scholar 

  • Skoblina, M.N., Kondrat’eva, O.T., Nikiforova, G.P., and Huhtaniemi, I., Effects of a chloride channel inhibitor and media with reduced concentration of chloride ions on ovulation of the Rana temporaria oocytes, Russ. J. Dev. Biol., 1996, vol. 27, pp. 354–359.

    Google Scholar 

  • Tingaud-Sequeira, A., Chauvigne, F., Fabra, M., et al., Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication, BMC Evol. Biol., 2008, vol. 8, pp. 259–277.

    Article  PubMed  Google Scholar 

  • Tingaud-Sequeira, A., Calusinska, M., Finn, R.N., et al., The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals, BMC Evol. Biol., 2010, vol. 10, pp. 38–54.

    Article  PubMed  Google Scholar 

  • Virkki, L.V., Franke, C., Somieski, P., and Boron, W.F., Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes, J. Biol. Chem., 2002, vol. 277, pp. 40610–40616.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R.A. and Selman, K., Oogenesis in Fundulus heteroclitus. I. Preliminary observations on oocyte maturation in vivo and in vitro, Dev. Biol., 1978, vol. 62, pp. 354–369.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R.A., Greeley, M.S., Jr., and McPherson, R., Analytical and experimental studies on the relationship between Na+, K+, and water uptake during volume increases associated with Fundulus oocyte maturation in vitro, J. Comp. Physiol. [B], 1992, vol. 162, pp. 241–248.

    Article  CAS  Google Scholar 

  • Yueh, W.S. and Chang, C.F., Morphological changes and competence of maturing oocytes in protandrous black porgy, Acanthopagrus schlegeli, Zool. Studies, 2000, vol. 39, pp. 114–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Skoblina.

Additional information

Original Russian Text © M.N. Skoblina, 2013, published in Ontogenez, 2013, Vol. 44, No. 4, pp. 287–297.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoblina, M.N. Role of hydration in ovulation of common frog oocytes in vitro. Russ J Dev Biol 44, 211–219 (2013). https://doi.org/10.1134/S1062360413030065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360413030065

Keywords

Navigation