Skip to main content
Log in

Age-related structural and functional characteristics of cardiac myoendocrine cells of rats in a normal state and with hereditary hypertension

  • Developmental Biology of Mammals
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

A qualitative and quantitative ultrastructural study of right atrial cardiomyocytes in WAG (normotensive control) and ISIAH (inherited stress-induced arterial hypertension) rats of different age (on day 18 of embryogenesis, on days 12 and 21 after birth, and at an age of 6 and 13 months) was performed. It was shown that, in embryos with an as yet incomplete atrial morphogenesis, secretory granules containing natriuretic peptides are actively formed, accumulated, and dissolved. In postnatal ontogeny, the secretory product is accumulated in atrial cells. In all ontogeny stages studied, the numerical density of secretory granules in the myoendocrine cells of hypertensive rats is greater and the qualitative composition of these granules is more diverse than in the control. It was established that, in atrial myocytes of ISIAH rats, the morphological signs of natriuretic peptide hypersecretion precede the development of genetically programmed high blood pressure. In adult hypertensive rats, hypertrophic and degenerative changes in myocytes are accompanied by excessive accumulation of secretory granules, some of which undergo intracellular degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avramovitch, N., Hoffman, A., Winaver, J., et al., Morphometric Analysis of Atrial Natriuretic Peptide-Containing Granules in Atriocytes of Rats with Experimental Congestive Heart Failure, Cell. Tissue Res., 1995, vol. 279, no. 3, pp. 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Azizov, V.A. and Muradova, S.R., Immunohistochemical and Electron-Microscopic Characterization of Secretory Cardiomyocytes in Experimental Myocardial Infarction, Anadolu Kardiol. Derg., 2003, no. 4, pp. 299–302.

    Google Scholar 

  • Baertschi, A.J., Monnier, D., Schmidt, U., et al., Acid Prohormone Sequence Determines Size, Shape, and Docking of Secretory Vesicles in Atrial Myocytes, Circ. Res., 2001, vol. 89, pp. E23–E29.

    Article  PubMed  CAS  Google Scholar 

  • de Bold, A.J., Borenstein, H.B., Veress, A.T., et al., A Rapid and Potent Natriuretic Response to Intravenous Injection of Atrial Myocardial Extract in Rats, Life Sci., 1981, vol. 28, pp. 89–94.

    Article  PubMed  Google Scholar 

  • de Bold, A.J., Bruneau, B.G., and de Bold, M.L., Mechanical and Neuroendocrine Regulation of the Endocrine Heart, Cardiovasc. Res., 1996, vol. 31, pp. 7–18.

    Article  PubMed  Google Scholar 

  • Bonow, R.O., New Insights into the Cardiac Natriuretic Peptides, Circulation, 1996, vol. 93, pp. 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, V.A., Aitken, G.D., Ellmers, L.J., et al., The Sites of Gene Expression of Atrial, Brain, and C-Type Natriuretic Peptide in Mouse Fetal Development: Temporal Changes in Embryos and Placenta, Endocrinology, 1996, vol. 137, pp. 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, V.A. and Ellmers, L.J., Minireview: Natriuretic Peptides during Development of the Fetal Heart and Circulation, Endocrinology, 2003, vol. 144, no. 6, pp. 2191–2194.

    Article  PubMed  CAS  Google Scholar 

  • Chimenti, C., Russo, M.A., Carpi, A., and Frustaci, A., Histological Substrate of Human Atrial Fibrillation, Biomed. Pharmacother., 2010, vol. 64, no. 3, pp. 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Clerico, A., Ry, S.D., and Giannessi, D., Measurement of Cardiac Natriuretic Hormones (Atrial Natriuretic Peptide, Brain Natriuretic Peptide, and Related Peptides) in Clinical Practice: The Need for a New Generation of Immunoassay Methods, Clin. Chem., 2000, vol. 46, pp. 1529–1534.

    PubMed  CAS  Google Scholar 

  • Das, B.B., Raj, S., and Solinger, R., Natriuretic Peptides in Cardiovascular Diseases of Fetus, Infants and Children, Cardiovasc. Hematol. Agents Med. Chem., 2009, vol. 7, no. 1, pp. 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Deloof, S., VanCamp G., Chatelain A. Absence of Transplacental Transfer of Atrial Natriuretic Peptide in the Rat: Direct Experimental Evidence, Med. Sci. Res., 1995, vol. 23, pp. 347–350.

    CAS  Google Scholar 

  • Feng, J.A., Perry, G., Miri, T., et al., Pressure-Independent Enhancement of Cardiac Hypertrophy in Atrial Natriuretic Peptide-Deficient Mice, Clin. Exp. Pharmacol. Physiol., 2003, vol. 30, nos. 5–6, pp. 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Goetze, J.P., Biosynthesis of Cardiac Natriuretic Peptides, Results Probl. Cell Differ., 2010, vol. 50, pp. 97–120.

    PubMed  CAS  Google Scholar 

  • Kawakami, H., Okayama, H., Hamada, M., et al., Alteration of Atrial Natriuretic Peptide and Brain Natriuretic Peptide Gene Expression Associated with Progression and Regression of Cardiac Hypertrophy in Renovascular Hypertensive Rats, Clin. Sci., 1996, vol. 90, pp. 197–204.

    PubMed  CAS  Google Scholar 

  • Korostyshevskaya, I.M. and Maksimov, V.F., Where and When Natriuretic Peptides Are Secreted in the Heart, Russ. J. Dev. Biol., 2012, vol. 43, no. 3, pp. 185–195.

    Article  CAS  Google Scholar 

  • Langenickel, T., Pagel, I., Hohnel, K., et al., Differential Regulation of Cardiac ANP and BNP mRNA in Different Stages of Experimental Heart Failure, Am. J. Physiol. Heart. Circ. Physiol., 2000, vol. 278, pp. H1500–H1506.

    PubMed  CAS  Google Scholar 

  • Lapsha, V.I., Bocharova, V.N., and Gurin, V.N., Structural and Functional Changes in the Right Atrium in Rats in Short-Term and Long-Term Heat Stress, Morfologiya, 2005, vol. 128, no. 5, pp. 48–52.

    CAS  Google Scholar 

  • Maksimov, V.F., Korostyshevskaya, I.M., Markel’, A.L., et al., Structural Characteristics of Cardiomyocytes in the Right Atrium of NISAG Rats, Bull. Exp. Biol. Med., 2004, vol. 138, no. 7, pp. 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Maksimov, V.F. and Korostyshevskaya, I.M., The Cardiac Hormonal System as a Link in Hemodynamic Regulation and Water-Salt Homeostasis, Ross. Fiziol. Zh. im. I.M. Sechenova, 2011, vol. 97, issue 3, pp. 263–275.

    PubMed  CAS  Google Scholar 

  • Maksimov, V.F. and Korostyshevskaya, I.M., Morphogenesis and Reaction to Hypoxia of Atrial Myoendocrine Cells in Chick Embryos (Gallus gallus), Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, no. 5, pp. 502–508.

    PubMed  CAS  Google Scholar 

  • Markel’, A.L., Genetic Model of Stress-Induced Hypertension, Izv. Akad. Nauk SSSR, Ser. Biol., 1985, vol. 3, pp. 466–469.

    PubMed  Google Scholar 

  • Maslova, L.N., Shishkina, G.N., Bulygina, V.V., et al., Brain Catecholamines and the Hypothalamo-Hypophyseal-Adrenocortical System in Hereditary Arterial Hypertension, Ross. Fiziol. Zh. im. I.M. Sechenova, 1996, vol. 82, no. 4, pp. 30–38.

    CAS  Google Scholar 

  • Nakayama, T., The Genetic Contribution of the Natriuretic Peptide System to Cardiovascular Diseases, Endocrine J., 2005, vol. 51, no. 1, pp. 11–21.

    Article  Google Scholar 

  • Navaratnam, V., Woodward, J.M., and Skepper, J.N., Specific Heart Granules and Natriuretic Peptide in the Developing Myocardium of Fetal and Neonatal Rats and Hamsters, J. Anat., 1989, vol. 163, pp. 261–273.

    PubMed  CAS  Google Scholar 

  • Ogawa, T., Vatta, M., Bruneau, B.G., et al., Characterization of Natriuretic Peptide Production by Adult Heart Atria, Am. J. Physiol. Heart. Circ. Physiol., 1999, vol. 276, no. 6, pp. H1977–H1986.

    CAS  Google Scholar 

  • Rakhcheeva, M.V. and Bugrova, M.L., Changes in the Proportion of Aand B-Types of Granules Containing Atrial and Brain Natriuretic Peptides in Atrial Myocytes in Vasorenal Hypertension in Rats, Tsitologiya, 2010, vol. 52, no. 8, pp. 629–633.

    CAS  Google Scholar 

  • Rumyantsev, P.P., Kardiomiotsity v protsessakh reproduktsii, differentsirovki i regeneratsii (Cardiomyocytes in Reproduction, Differentiation, and Regeneration), Leningrad: Nauka, 1982.

    Google Scholar 

  • Scott, N.J., Ellmers, L.J., Lanchbury, J.C., et al., Influence of Natriuretic Peptide Receptor-1 on Survival and Cardiac Hypertrophy during Development, Biochim. Biophys. Acta, 2009, vol. 1792, no. 12, pp. 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  • Shmerling, M.D., Filyushina, E.E., Korostyshevskaya, I.M., et al., Histological and Ultrastructural Characteristics of the Myocardium of Rats of the New Hypertensive Line (ISIAH) in Early Ontogeny, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 1997, no. 2, pp. 91–94.

    Google Scholar 

  • Shmerling, M.D., Buzueva, I.I., Korostyshevskaya, I.M., et al., Stereomorphological Study of Target Organs in Rats with Hereditary Hypertension in Different Periods of Postnatal Ontogenesis When Feeding Conditions Change, Morfologiya, 2005, vol. 128, no. 4, pp. 85–90.

    CAS  Google Scholar 

  • D’Souza, S.P., Davis, M., and Baxter, G.F., Autocrine and Paracrine Actions of Natriuretic Peptides in the Heart, Pharmacol. Ther., 2004, vol. 101, no. 2, pp. 113–129.

    Article  PubMed  Google Scholar 

  • Tilkova, L., Novotova, M., Zahradnik, I., and Kiss, A., Evaluation of Changes in Secretory Granules of Atrial Myocytes: A Morphometric Approach, Anal. Quant. Cytol. Histol., 2008, vol. 30, no. 1, pp. 53–59.

    Google Scholar 

  • Vesely, D.L., Atrial Natriuretic Peptides in Pathophysiological Diseases, Cardiovasc. Res., 2001, vol. 51, pp. 647–658.

    Article  PubMed  CAS  Google Scholar 

  • Vesely, D.L., Which of the Cardiac Natriuretic Peptides Is Most Effective for the Treatment of Congestive Heart Failure, Renal Failure and Cancer?, Clin. Exper. Pharm. Physiol., 2006, vol. 33, no. 3, pp. 169–176.

    Article  CAS  Google Scholar 

  • Vesely, D.L., Discovery of New Cardiovascular Hormones for the Treatment of Congestive Heart Failure, Cardiovasc. Hematol. Disord. Targets, 2007, vol. 7, no. 1, pp. 47–62.

    Article  CAS  Google Scholar 

  • Volkova, N.N., Drapkina, O.M., and Ivashkin, V.T., Ultrastructural and Functional Features of Atrial and Ventricular Cardiomyocytes, Klin. Med., 2006, no. 11, pp. 16–20.

    Google Scholar 

  • Zhang, F. and Pasumarthi, K.B., Ultrastructural and Immunocharacterization of Undifferentiated Myocardial Cells in the Developing Mouse Heart, J. Cell. Mol. Med, 2007, vol. 11, no. 3, pp. 552–560.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Korostyshevskaya.

Additional information

Original Russian Text © I.M. Korostyshevskaya, V.F. Maksimov, 2013, published in Ontogenez, 2013, Vol. 44, No. 2, pp. 77–90.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korostyshevskaya, I.M., Maksimov, V.F. Age-related structural and functional characteristics of cardiac myoendocrine cells of rats in a normal state and with hereditary hypertension. Russ J Dev Biol 44, 57–68 (2013). https://doi.org/10.1134/S1062360413020045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360413020045

Keywords

Navigation