Skip to main content
Log in

Ontogenetic causes and mechanisms for formation of differences in number of fish scales

  • Proceedings of VIII International Conference on Early Ontogenesis of Fish and Commercial Invertebrates (Kaliningrad, 19–23 April, 2010)
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Fish squamation is developed in late ontogeny. Therefore, the conditions of development significantly affect its characteristics (number of scales). This study is aimed at considering the influence of external and internal factors on variation of the number of scales in fish. Acceleration of development results in decrease of the number of scales, while it increases with retardation. Experiments on regulation of thyroid status of fish showed that the certain mechanism of alteration of the number of scales is related with heterochrony, such as a shift of the timing of squamation. Accelerated development is caused by early scale development at smaller body length, while retarded development is characterized with later scale development and at greater body length. Data considering heterochrony as the possible reason for differences in the number of scales in related fish species are represented. Moreover, alterations of the distance between scales (morphogenetic count) can serve as another alteration mechanism of the number of scales in fish (especially phyletically distant species).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Able, K.W., Sakowicz, G.P., and Lamonaca, J.C., Scale Formation in Selected Fundulid and Cyprinodontid Fishes, Ichthyol. Res., 2008, vol. 56, pp. 1–9.

    Article  Google Scholar 

  • Atlas presnovodnykh ryb Rossii (Freshwater Fishes of Russia: An Atlas), Reshetnikov, Yu.S., Ed., Moscow: Nauka, 2003, vol. 1.

    Google Scholar 

  • Brown, D.D., The Role of Thyroid Hormone in Zebrafish and Axolotl Development, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13011–13016.

    Article  PubMed  CAS  Google Scholar 

  • Burdak, V.D., Funktsional’naya morfologiya cheshuinogo pokrova ryb (Functional Morphology of Fish Scale), Kiev: Naukova dumka, 1979.

    Google Scholar 

  • Carter, V., Pierce, R., Dufour, S., et al., The Tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) Inhibits LH Expression and Puberty in Its Teleost Host, Rutilus rutilus, Reproduction, 2005, vol. 130, no. 6, pp. 939–945.

    CAS  Google Scholar 

  • Dgebuadze, Yu.Yu. and Chernova, O.F., Cheshuya kostistykh ryb kak diagnosticheskaya i registriruyushchaya struktura (Teleost Scale as a Diagnostic and Recording Structure), Moscow: Tovar. Nauchn. Izd. KMK, 2009.

    Google Scholar 

  • Eales, J.G., Chang, J.P., van der Kraak, G., et al., Effects of Temperature on Plasma Thyroxin and Iodide Kinetics in Rainbow Trout, Salmo gairdneri, Gen. Comp. Endocrinol., 1982, vol. 47, no. 3, pp. 295–307.

    Article  CAS  Google Scholar 

  • Flick, G., Fenwick, J.C., Kolar, Z., et al., Effects of Low Ambient Calcium Levels on Whole Body Ca2+ Flux Rates and Internal Calcium Pools in the Freshwater Cichlid Teleost, Oreochromis mossambicus, J. Exp. Biol., 1986, vol. 120, pp. 249–264.

    Google Scholar 

  • Fontaínhas-Fernandez, A., Monteiro, M., Gomes, E., et al., Effect of Dietary Sodium Chloride Acclimation on Growth and Plasma Thyroid Hormones in Tilapia oreochromis niloticus (L.) in Relation to Sex, Aquacult. Res., 2000, vol. 31, pp. 507–517.

    Article  Google Scholar 

  • Harris, M.P., Rohner, N., Schwarz, H., et a., Zebrafish Eda and Edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates, PLoS Genet., 2008, vol. 4, no. 10, p. el000206, doi: 10.1371/journal. pgen.l000206.

    Article  Google Scholar 

  • Hubbs, C.L., The Related Effects of a Parasite on a Fish, J. Parasitol., 1927, vol. 24, no. 2, pp. 75–84.

    Article  Google Scholar 

  • Hubbs, C.L., The Structural Consequences of Modifications of the Developmental Rate in Fishes, Considered in Reference to Certain Problems of Evolution, Am. Nat., 1926, vol. 60, pp. 57–81.

    Article  Google Scholar 

  • Hubbs, C.L., Variations in the Number of Vertebrae and Other Meristic Characters of Fishes Correlated with the Temperature of Water during Development, Am. Nat., 1922, vol. 56, pp. 360–372.

    Article  Google Scholar 

  • de Jesus, E.G.T., Toledo, J.D., and Simpas, M.S., Thyroid Hormones Promote Early Metamorphosis in Grouper (Epinephelus coioides) Larvae, Gen. Comp. Endocrinol., 1998, vol. 112, pp. 10–16.

    Article  PubMed  Google Scholar 

  • Jobling, S. and Tyler, C.R., Endocrine Disruption in Wild Freshwater Fish, Pure Appl. Chem., 2003, vol. 75, nos. 11–12, pp. 2219–2234.

    Article  CAS  Google Scholar 

  • Kerr, T., The Pituitary in Normal and Parasitized Roach, Leuciscus rutilus Flem, Q. J. Microsc. Sci., 1948, vol. 89, pp. 129–137.

    PubMed  CAS  Google Scholar 

  • Kirpichnikov, V.S., Geneticheskie osnovy selektsii ryb (Genetic Bases of Fish Breeding), Leningrad: Nauka, 1979.

    Google Scholar 

  • Kondo, S., Kuwahara, Y., Kondo, M., et al., The Medaka rs-3 Locus Required for Scale Development Encodes Ectodysplasin-A Receptor, Curr. Biol., 2001, vol. 11, pp. 1202–1206.

    Article  PubMed  CAS  Google Scholar 

  • Kozhara, A.V. and Izyumov, Yu.G., The Intraspecific Taxonomy of the Bream Abramis brama (Cypriniformes, Cyprinidae), Zool. Zh., 1991, vol. 70, no. 4, pp. 74–84.

    Google Scholar 

  • Leatherland, J.F., Field Observations on Reproductive and Developmental Dysfunction in Introduced and Native Salmonids from the Great Lakes, J. Great Lakes Res., 1993, vol. 19, no. 4, pp. 737–751.

    Article  CAS  Google Scholar 

  • Levin, B.A., Bolotovskii, A.A., and Levina, M.A., The Role of Heterochrony in the Formation of the Number of Countable Elements of the Postcranial Dermal Skeleton of Fishes, in Tezisy dokladov VIII Mezhdunarodnoy konferentsii po rannemu ontogenezu ryb i promyslovykh bespozvonochnykh. Svetlogorsk, 19–23 aprelya 2010 (Abstr. VIII Int. Conf. on Early Ontogenesis of Fish and Commercially Valuable Invertebrates, Svetlogorsk, April 19–23, 2010), Kaliningrad, 2010, pp. 60–62.

  • Levin, B.A., Drastic Shift in the Number of Lateral Line Scales in Common Roach Rutilus rutilus as a Result of Heterochronies: Experimental Data, J. Appl. Ichthyol., 2010, vol. 26, pp. 303–306.

    Article  Google Scholar 

  • MacKenzie, D.S., Jones, R.A., and Miller, T.C., Thyrotrophin in Teleost Fish, Gen. Comp. Endocrinol., 2009, vol. 161, no. 1, pp. 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Mavrin, A.S., Formation of the Scale Cover of the Blue Bream Abramis ballerus in the First Year of Life, Vopr. Ikhtiol., 1988, vol. 28, no. 6, pp. 998–1006.

    Google Scholar 

  • Mironovskii, A.N., On the Geographical Variability of Cyprinids: Characteristics of Microevolution of Populations of Delta-Estuarine Areas, Zool. Zh., 1988, vol. 67, no. 7, pp. 1013–1024.

    Google Scholar 

  • Mironovskii, A.N., On the Population Structure of Bream (Abramis brama) of the Caspian-Volga Region, Zool. Zh., 1985, vol. 64, no. 2, pp. 307–311.

    Google Scholar 

  • Monnot, M.J., Babin, P.J., Poleo, G., et al., Epidermal Expression of Apolipoprotein E Gene during Fin and Scale Development and Fin Regeneration in Zebrafish, Dev. Dyn., vol. 214, pp. 207–215.

  • Mottley, C.M., The Effect of Temperature during Development on the Number of Scales in the Kamloops Trout, Salmo kamloops Jordan, Contr. Canad. Biol., 1934, vol. 8, pp. 254–263.

    Google Scholar 

  • Mottley, C.M., The Effect of Temperature on the Number of Scales in Trout, Science, 1931, vol. 74, no. 1917, p. 316.

    Article  PubMed  CAS  Google Scholar 

  • Neave, F., Origin of the Teleost Scale Pattern and the Development of the Teleost Scale, Nature, 1936, vol. 137, no. 3477, pp. 1034–1035.

    Article  Google Scholar 

  • Nenashev, G.A., Heritability of Some Morphological (Diagnostic) Traits of Ropsha Carps, Izv. GosNIORKh, 1966, vol. 61, pp. 125–135.

    Google Scholar 

  • Nuñez, V.A., Sarrazin, A.F., Cubedo, N., et al., Postembryonic Development of the Posterior Lateral Line in the Zebrafish, Evol. Dev., 2009, vol. 11, no. 4, pp. 391–404.

    Article  PubMed  Google Scholar 

  • Opitz, R. and Kloas, W., Developmental Regulation of Gene Expression in the Thyroid Gland of Xenopus laevis Tadpoles, Gen. Comp. Endocrinol., 2010, vol. 168, no. 2, pp. 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Park, E.-H. and Lee, S.-H., Scale Growth and Squamation Chronology for the Laboratory-Reared Hermafroditic Fish Rivulus marmoratus (Cyprinodontidae), Jap. J. Ichthyol., 1988, vol. 34, pp. 476–482.

    Google Scholar 

  • Pavlov, D.A., Morfologicheskaya izmenchivost’ v rannem ontogeneze kostistykh ryb (Morphological Variation in Early Ontogenesis of Teleosts), Moscow: GEOS, 2007.

    Google Scholar 

  • Pickford, G.E. and Atz, JW., The Physiology of the Pituitary Gland of Fishes, New York: New York Zoological Society, 1957.

    Google Scholar 

  • Sire, J.-Y. and Akimenko, M.A., Scale Development in Fish: A Review, with Description of Sonic Hedgehog Expression in the Zebrafish (Danio rerio), Int. J. Dev. Biol., 2004, vol. 48, pp. 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Sire, J.-Y. and Arnulf, I., The Development of Squamation in Four Teleostean Fishes with a Survey of the Literature, Jap. J. Ichthyol., 1990, vol. 37, pp. 133–143.

    Google Scholar 

  • Sire, J.-Y., Allizard, F., Babiar, O., et al., Scale Development in Zebrafish (Danio rerio), J. Anat., 1997, vol. 190, pp. 545–561.

    Article  PubMed  Google Scholar 

  • Sire, J.-Y., Donoghue, Ph.C.J., and Vickaryous, M.K., Origin and Evolution of the Integumentary Skeleton in Non-Tetrapod Vertebrates, J. Anat., 2009, vol. 214, pp. 409–140.

    Article  PubMed  Google Scholar 

  • Smirnov, S.V., Dzerzhinskii, K.F., and Levin, B.A., On the Relationship between Scale Number in the Lateral Line in the African Barbel Barbus intermedius and the Rate of Ontogeny (by Experimental Data), Vopr. Ikhtiol., 2006, vol. 46, no. 1, pp. 134–138 (J. Ichthyol. (Engl. Transl.), 2006, vol. 46, no. 1, pp. 129–132).

    Google Scholar 

  • Tatarko, K.M., Effect of Temperature on Meristic Characteristics of Fish, Vopr. Ikhtiol., 1968, vol. 8, no. 3, pp. 425–439.

    Google Scholar 

  • Theodorakis, C.W., Rinchard, J., Carr, J.A., et al., Thyroid Endocrine Disruption in Stonerollers and Cricket Frogs from Perchlorate-Contaminated Streams in East-Central Texas, Ecotoxicology, 2006, vol. 15, no. (1), pp. 31–50.

    Article  PubMed  CAS  Google Scholar 

  • Trubiroha, A., Kroupova, K., Wuertz, S., et al., Naturally-Induced Endocrine Disruption by the Parasite Ligula intestinalis (Cestoda) in Roach (Rutilus rutilus), Gen. Comp. Endocrinol., 2010, vol. 166, no. 2, pp. 234–240.

    Article  PubMed  CAS  Google Scholar 

  • Villwock, W., Genetische Analyse des Merkmals “Beschuppung” bei anatolischen Zahnkarpfen (Pisces, Cyprinodontidae) im Aufloserversuch, Zool. Anz., vol. 170, nos. 1–2, pp. 23–45.

  • Yakovlev, V.N., “The Industrial Race” of the Common Roach Rutilus rutilus (Pisces, Cyprinidae), Zool. Zh., 1992, vol. 71, no. 6, pp. 81–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Levin.

Additional information

Original Russian Text © B.A. Levin, 2011, published in Ontogenez, 2011, Vol. 42, No. 3, pp. 220–225.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, B.A. Ontogenetic causes and mechanisms for formation of differences in number of fish scales. Russ J Dev Biol 42, 186–191 (2011). https://doi.org/10.1134/S1062360411030106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360411030106

Keywords

Navigation