Skip to main content
Log in

Yeast prions as a model of neurodegenerative infectious amyloidoses in humans

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Several neurodegenerative diseases (so-called age-related diseases) in humans are associated with development of protein aggregates—amyloids. Prion diseases—kuru, Kreutzfeldt—Jakob and Gerstmann—Straussler—Sheinker diseases, fatal familial insomnia, etc.—are examples of infectious amyloidoses. A model system for investigation of mechanisms of amyloidogenesis and of its infectious nature had been developed as a result of yeast prion discovery. The existence of a prion network as an interaction of different prions identified in yeast is being confirmed recently as an interaction of different anyloids in humans. The potential danger of amyloidoses is conditioned by the very structure of almost all proteins containing fragments capable to be organized as β-sheets, which lead to their aggregation being exposed. Meanwhile, there are several well-defined examples of the adaptive value of amyloid aggregates: cytoplasmic incompatibility factor in Podospora anserina, spider silk, cytoplasmic stress granules in mammals, prion form of CPEB protein responsible for the neuron activity in Aplisia, etc. These facts should be taken into consideration when seeking antiamyloid drugs. Discovery of protein inheritance in lower eukaryotes modifies our knowledge of the template principle significance in biology and adds a concept of conformational templates (II order templates) involved in reproduction of the three-dimensional structure of the supramolecular complexes in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, S., Halfman, R., King, O., Kapila, A., and Lindquist, S., A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins, Cell, 2009, vol. 137, pp. 146–158.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, P. and Kedersha, N., Stressful Initiations, J. Cell Sci., 2002, vol. 115, pp. 3227–3234.

    PubMed  CAS  Google Scholar 

  • Bremer, J., Baumann, F., Tiberi, C., Wessig, C., Fischer, H., Schwarz, P., Steele, A.D., Toyka, K.V., Nave, K.-A., Weis, J., and Aguzzi, A., Axonal Prion Protein Is Required for Peripheral Myelin Maintenance, Nature Neurosci., 2010, vol. 13, pp. 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.C.S. and Lindquist, S., A Heritable Switch in Car- bon Source Utilization Driven by an Unusual Yeast Prion, Genes Dev., 2009, vol. 23, pp. 2320–2332.

    Article  PubMed  CAS  Google Scholar 

  • Brundin, P., Melki, R., and Kopito, R., Prion-Like Trans-mission of Protein Aggregates in Neurodegenerative Diseases, Nature Revs., 2010, vol. 11, pp. 301–307.

    Article  CAS  Google Scholar 

  • Chernoff, Yu.O., Derkach, I.L., and Inge-Vechtomov, S.G., Multicopy SUP35 Gene Induces de-novo Appearance of psi-Like Factors in the Yeast Saccharomyces cerevisiae, Curr. Genet., 1993, vol. 24, pp. 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Chernov, Yu.O., Derkach, I.L., Dagkesamanskaya, A.R., Tikhomirova, V.L., Ter-Avanesyan, M.D., and Inge-Vechtomov, S.G., Nonsense-Suppression during Amplification of the Gene Coding for Protein Translation Factor, Dokl. Akad. Nauk SSSR, 1988, vol. 301, pp. 1227–1229.

    PubMed  CAS  Google Scholar 

  • Coustou, V., Deleu, C., Saupe, S., and Begueret, J., The Protein Product of the Het-S Heterokaryon Incompatibility Gene of the Fungus Podospora anserine Behaves as a Prion Analog, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 9773–9778.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B.S., Ψ, a Cytoplasmic Suppressor of Super-Suppression in Yeast, Heredity, 1965, vol. 20, pp. 505–521.

    Article  Google Scholar 

  • Crick, F., Central Dogma of Molecular Biology, Nature, 1970, vol. 227, pp. 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C., On Protein Synthesis, Symp. Soc. Exp. Biol., 1958, vol. 12, pp. 138–163.

    PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Bradeley, M.E., Hong, J.Y., and Liebman, S.W., Prions Affect the Appearance of Other Prions: The Story of [PIN +], Cell, 2001, vol. 106, pp. 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Du, Z., Park, K.W., Yu, H., Fan, Q., and Li, L., Newly Identified Prion Linked to the Chromatin Remodeling Factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 2008, vol. 40, pp. 460–465.

    Article  PubMed  CAS  Google Scholar 

  • Fink, G.R., A Transforming Principle, Cell, 2005, vol. 120, pp. 153–154.

    Article  PubMed  CAS  Google Scholar 

  • Galkin, A.P., Mironova, L.N., Zhuravleva, G.A., and Inge-Vechtomov, S.G., Yeast Prions, Mammalian Amyloidoses, and the Problem of Proteomic Networks, Genetika, 2006, vol. 42, pp. 1558–1570.

    PubMed  CAS  Google Scholar 

  • Gilks, N., Kedersha, N., Ayodele, M., et al., Stress Granule Assembly Is Mediated by Prion-Like Aggregation of TIA-1, Mol. Biol. Cell, 2004, vol. 15, pp. 5383–5398.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J.R., Kowal, A.S., Schirmer, E.C., Patino, M.M., Liu, J.J., and Lindquist, S., Self-Seeded Fibers Formed by Sup35, the Protein Determinant of [PSI +], a Heritable Prion-Like Factor of S. cerevisiae, Cell, 1997, vol. 89, pp. 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Hagn, F., Eisolt, L., Hardy, J.G., Vendrely, C., Coles, M., Scheibel, T., and Kessler, H., A Conserved Spider Silk Domain Acts as a Molecular Switch that Controls Fiber Assembly, Nature, 2010, vol. 465, pp. 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Inge-Vechtomov, S.G. and Andrianova, V.M., Recessive Supersuppressors in Yeast, Genetika, 1970, vol. 6, pp. 103–116.

    Google Scholar 

  • Inge-Vechtomov, S.G., Borkhsenius, A.S., and Zadorskii, S.P., Protein Inheritance: the Conformational Templates and Epigenetics, Inform. Vestn. VOGiS, 2004, vol. 8, no. 2, pp. 60–66.

    Google Scholar 

  • Inge-Vechtomov, S.G., Prions of Yeast and the Central Dogma of Molecular Biology, Vestn. Ross. Akad. Nauk, 2000, vol. 70, pp. 195–202.

    Google Scholar 

  • Inge-Vechtomov, S.G., Reversions to the Prototrophicity in Yeasts that Require Adenine, Vestn. Len. Univ., Ser. 3: Biol., 1964, no. 2, pp. 112–116.

  • Kajava, A.V., Baxa, L.D., Wickner, R.B., and Steven, A.C., AModel for Ure2p Prion Filaments and Other Amyloids: The Parallel Superpleated beta-Structure, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 7885–7890.

    Article  PubMed  CAS  Google Scholar 

  • King, C.-Y., Tittman, P., Gross, H., Geber, R., Aebi, M., and Wuthrich, K., Prion-Inducing Domain 2–114 of Yeast Sup35 Protein Transforms in vitro into Amyloid-Like Filaments, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6618–6622.

    Article  PubMed  CAS  Google Scholar 

  • Kol’tsov, N.K., Nasledstvennye molekuly. 1928 (Hereditary Molecules. 1928), cited according to Organizatsiya kletki (Cell Organization), Gos. Izd. Biol. Med. Lit., Moscow, 1936, pp. 585–622.

    Google Scholar 

  • Luzatto, L. and Notaro, R., Haemoglobin’s Chaperone, Nature, 2002, vol. 417, pp. 704–705.

    Article  Google Scholar 

  • Maji, S.K., Perrin, M.H., Sawaya, M.R., Jessberger, S., Vadodaria, K., Rissman, R.A., Singru, P.S., Nilsson, K.P.R., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R., Functional Amyloids as Natural Storage of Peptide Hormones in Pituitary Secretory Granules, Science, 2009, vol. 325, pp. 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Michelitsch, M.D. and Weissman, J.S., A Census of Glutamine/Asparagines-Rich Regions: Implications for Their Conserved Function and the Prediction of Novel Prions, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11910–11915.

    Article  PubMed  CAS  Google Scholar 

  • Morales, R., Estrada, L.D., Diaz-Espinoza, R., Morales-Scheihing, D., Jara, M.C., Castilla, J., and Soto, C., Molecular Cross-Talk between Misfolded Proteins in Animal Models of Alzheimer’s and Prion Diseases, J. Neurosci., 2010, vol. 30, pp. 4528–4535.

    Article  PubMed  CAS  Google Scholar 

  • Nemecek, J., Nakayashiki, T., and Wickner, R.B., A Prion of Yeast Metacaspase Homolog (Mca1p) Detected by a Genetic Screen, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 1892–1896.

    Article  PubMed  CAS  Google Scholar 

  • Osherovich, L.Z. and Weissman, J.S., Multiple Gln/Asn-Rich Prion Domains Confer Susceptibility to Induction of the Yeast [PSI +] Prion, Cell, 2001, vol. 106, pp. 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Parry, H.B., Scrapie: A Transmissible and Hereditary Disease of Sheep, Heredity, 1962, vol. 17, pp. 75–105.

    Article  PubMed  CAS  Google Scholar 

  • Patel, B.K., Gavin-Smyth, J., and Liebman, S.W., The Yeast Global Transcriptional Co-Repressor Protein Cyc8 Can Propagate as Prion, Nature Cell Biol., 2009, vol. 11, pp. 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N., and Ter-Avanesyan, M.D., In vitro Propagation of the Prion-Like State of Yeast Sup35 Protein, Science, 1997, vol. 277, pp. 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M.F., Finch, J.T., Berriman, J., and Lesk, A., Amyloid Fibers Are Water-Filled Nanotubes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 5591–5595.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Prions, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Shattuck Lecture-Neurodegenerative Diseases and Prions, N. Engl. J. Med., 2001, vol. 344, pp. 1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Riek, R., Infectious Alzheimer’s Disease?, Nature, 2006, vol. 444, pp. 429–431.

    Article  PubMed  CAS  Google Scholar 

  • Rogoza, T., Goginashwili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., Volkov, K., and Mironova, L., Non-Mendelian Determinant [ISP +] in Yeast Is a Nuclear-Residing Prion Form of the Global Transcriptional Regulator Sfp1, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 10573–10577.

    Article  PubMed  CAS  Google Scholar 

  • Schnabel, J., The Dark Side of Proteins, Nature, 2010, vol. 464, pp. 828–829.

    Article  PubMed  CAS  Google Scholar 

  • Si, K., Choi, Y-B., White-Grindley, E., Majumdar, A., and Kandel, E.R., Aplisia CPEB Can Form Prion-Like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation, Cell, 2010, vol. 140, pp. 421–435.

    Article  PubMed  CAS  Google Scholar 

  • Si. K., Lindquist, S., and Kandel, E.R., A Neuronal Isoform of the Aplisia CPEB Has Prion-Like Properties, Cell, 2003, vol. 115, pp. 879–891.

    Article  PubMed  CAS  Google Scholar 

  • Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., Didichenko, S.A., Chernoff, Yu.O., Inge-Vechtomov, S.G., and Smirnov, V.N., Deletion Analysis of the SUP35 Gene of the Yeast Saccharomyces Cerevisiae Reveals Two Nonoverlapping Functional Regions in the Encoded Protein, Mol. Microbiol., 1993, vol. 7, pp. 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Tuite, M.F., Mundy, C.R., and Cox, B.S., Agents that Cause a High Frequency of Genetic Change from [PSI +] to [PSI-] in Saccharomyces cerevisiae, Genetics, 1981, vol. 98, pp. 691–711.

    PubMed  CAS  Google Scholar 

  • Vendruscolo, M. and Dobson, C., More Charges Against Aggregation, Nature, 2007, vol. 449, p. 555.

    Article  PubMed  CAS  Google Scholar 

  • Volkov, K., Osipov, K., Valouev, I., Inge-Vechtomov, S., and Mironova, L., N-Terminal Extension of Saccharomyces cerevisiae Translation Termination Factor ERF3 Influences the Suppression Efficiency of Sup35 Mutations, FEMS Yeast Res., 2007, vol. 7, pp. 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, R.B., [URE3] as an Altered URE2 Protein: Evidence for a Prion Analog in Saccharomyces cerevisiae, Science, 1994, vol. 264, pp. 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Zhouravleva, G., Frolova, L., Le Goff, X., Le Guillec, R., Inge-Vechtomov, S.G., Kisselev, L., and Philippe, M., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors eRF1 and eRF3, The EMBO J., 1995, vol. 14, pp. 4065–4072.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Inge-Vechtomov.

Additional information

Original Russian Text © S.G. Inge-Vechtomov, 2011, published in Ontogenez, 2011, Vol. 42, No. 5, pp. 337–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inge-Vechtomov, S.G. Yeast prions as a model of neurodegenerative infectious amyloidoses in humans. Russ J Dev Biol 42, 293–300 (2011). https://doi.org/10.1134/S1062360411020068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360411020068

Keywords

Navigation