Skip to main content
Log in

Age-dependent changes in the concentration of active sex steroids, precursors, metabolites, and regulatory agents in blood serum of male subjects

  • Developmental Biochemistry
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

We measured blood concentration of active and non-active sex steroids, metabolites, and precursors and compared to changes in protein and peptide hormones controlling the reproductive axis (total 14 hormones and hormone-like substances) in male subjects aged 18 to 72 y.o. We found a significant decrease in serum concentration of precursors for active sex steroids (pregnenolone, progesterone, dehydroepiandrosterone, and DHEA-sulfate), free testosterone, androstenedione (non-active metabolite of testosterone) as well as 5α-dihydrotestone after the age of 35. However, the level of total testosterone and estradiol (another active testosterone metabolite) remained steady. The systems regulated production of active sex steroids resisted a higher load associated with age and caused the increase in luteinizing and follicle-stimulating hormones in hypophysis and activin in steroidogenic glands directly correlating with age; negative correlation for these hormones was confirmed with certain sex steroids explaining the negative feedback. Decrease in level of hypopheseal adrenocorticotropic hormone with age demonstrated a more substantial role for adrenal glands compared to that of testicles in reduction of blood concentration of active sex steroids. In general, despite the reduced activity of steroidogenic glands in 60-to 70-year old male subjects the level of testosterone and estradiol remained unchanged due to associated growth of level of luteinizing and follicle-stimulating hypopheseal hormones as well as activin in steroidogenic glands that stimulated biosynthesis of sex steroids. Also androgen effects were inhibited due to the reduced level of free (unbound) testosterone and 5α-dihydrotestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar, M., Kelly, S., and Kaderbhai, M., Cytochrome B5 Modulation of 17 Hydroxylase and 17–20 Lyase (CYP17) Activities in Steroidogenesis, J. Endocrinol., 2005, vol. 187, pp. 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Auchus, J. and Rainey, W., Adrenarche-Physiology, Biochemistry and Human Disease, Clin. Endocrinol., 2004, vol. 60, pp. 288–296.

    Article  CAS  Google Scholar 

  • Baquedano, M., Saraco, N., Berensztein, E., et al., Identification and Developmental Changes of Aromatase and Estrogen Receptor Expression in Prepubertal and Pubertal Human Adrenal Tissues, J. Clin. Endocrnol. Metab., 2007, vol. 92, pp. 2215–2222.

    Article  CAS  Google Scholar 

  • Belgorosky, A., Baquedano, M., Guercio, G., et al., Adrenarche: Postnatal Adrenal Zonation and Hormonal and Metabolic Regulation, Horm. Res., 2008, vol. 70, pp. 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, D., Both SMAD2 and SMED3 Mediate Activin-Stimulated Expression of the Follicle-Stimulating Hormone Beta Subunit in Mouse Gonadotrope Cells, Mol. Endocrinol., 2004, vol. 18, no. 3, pp. 606–623.

    Article  CAS  PubMed  Google Scholar 

  • Blouin, K., Nadeau, M., Mailloux, J., et al., Pathways of Adipose Tissue Androgen Metabolism in Women: Depot Differences and Modulation by Adipogenesis, Am. J. Physiol. Endocrinol. Metab., 2009, vol. 296.

  • Carreau, S., Bourquiba, S., Lambard, S., et al., The Promoter(s) of Aromatase Gene in Male Testicular Cells, Reprod. Biol., 2004, vol. 4, no. 1, pp. 23–34.

    PubMed  Google Scholar 

  • Chahal, H. and Drake, W., The Endocrine System and Aging, J. Pathol., 2007, vol. 211, no. 3, pp. 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Dolomie-Faqour, L., Gatta, B., Nguyen, T., et al., Bioavailable Estradiol in Men: Relationship with Age and Testosterone, Clin. Chim. Acta, 2008, vol. 398, no. 7, pp. 145–147.

    Article  CAS  Google Scholar 

  • Farnworth, P., Stanton, P., Wang, Y., et al., Inhibins Differentially Antagonize Activin and Bone Morphogenetic Protein Action in Mouse Adrenocortical Cell Line, Endocrinology, 2006, vol. 147, pp. 3462–3471.

    Article  CAS  PubMed  Google Scholar 

  • Gennari, L., Nuti, R., and Bilezikian, J., Aromatase Activity and Bone Homeostasis in Men, J. Clin. Endocrinol. Metab., 2004, vol. 89, pp. 5898–6907.

    Article  CAS  PubMed  Google Scholar 

  • Goncharov, N.P., Katsiya, G.V., and Nizhnik, F.N., Formula zhizni. Degidroepiandrosteron: svoistva, metabolizm, biologicheskoe znachenie (Life Formula. Dehydroepiandrosteron: Properties, Metabolism, and Biological Significance), Moscow: Adamant“, 2004.

    Google Scholar 

  • Gooren, L., Saad, F., Haide, A., and Yassin, A., Decline of Plasma 5α-Dihydrotestosterone (DHT) Levels upon Testosterone Administration to Elderly Men with Subnormal Plasma Testosterone and High DHT Levels, Andrologia, 2008, vol. 40, no. 5, pp. 298–302.

    Article  CAS  PubMed  Google Scholar 

  • Hamden, K., Silandre, D., Delalande, C., et al., Age-Related Decrease in Aromatase and Estrogen Receptor (ER and ER) Expression in Rat Testis: Prospective Effect of Low Caloric Diets, Asian J. Androl., 2008, vol. 10, no. 2, pp. 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Hammer, F., Drescher, D., Schneider, S., et al., Sex Steroid Metabolism in Human Peripheral Blood Mononuclear Cells Changes with Aging, J. Clin. Endocrinol. Metab., 2005, vol. 90, pp. 6283–6289.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T. and Yamada, T., Association of Bioavailable Estradiol Levels and Testosterone Levels with Serum Albumin Levels in Elderly Men, Aging Male, 2008, vol. 11, no. 2, pp. 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Hirai, S., Yamanaka, M., Kawachi, H., et al., Activin A Inhibits Differentiation of 3T3-L1 Preadipocyte, Mol. Cell Endocrinol., 2005, vol. 232, pp. 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Kogame, M., Matsuo, S., Nakatani, M., et al., ALK7 is a Novel Marker for Adipocyte Differentiation, J. Med. Invest., 2006, vol. 53, pp. 238–245.

    Article  PubMed  Google Scholar 

  • Lunenfeld, B., Endocrinology of Aging Male, Minerva Ginecol., 2006, vol. 58, no. 2, pp. 153–170.

    CAS  PubMed  Google Scholar 

  • Luo, L., Chen, H., and Zirkin, B., Temporal Relationships among Testosterone Production, Steroidogenic Acute Regulatory Protein (StAR), and P450 Side-Chain Cleavage Enzyme (P450scc) during Leidig Cell Aging, J. Androl., 2005, vol. 26, no. 1, pp. 25–31.

    CAS  PubMed  Google Scholar 

  • Miwa, Y., Kaneda, T., and Yokoyama, O., Correlation between the Aging Males Symptoms Scale and Sex Steroids, Gonadotropins, Dehydroepiandrosterone Sulfate and Growth Hormone Levels in Ambulatory Men, J. Sex. Med., 2006, vol. 3, no. 4, pp. 723–726.

    Article  CAS  PubMed  Google Scholar 

  • Mukasa, C., Nomura, M., Tanaka, T., et al., Activin Signalling through Type IB Activin Receptor Stimulates Aromatase Activity in the Ovarian Granulose Cell-Like Human Granulose (KGN) Cells, Endocrinology, 2003, vol. 144, pp. 1603–1611.

    Article  CAS  PubMed  Google Scholar 

  • Payne, A. and Hales, D., Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones, Endocrine Rev., 2004, vol. 25, pp. 947–970.

    Article  CAS  Google Scholar 

  • Simpson, E. and Davis, S., Aromatase and the Regulation of Estrogen Biosynthesis-Some New Perspectives, Endocrinology, 2001, vol. 142, pp. 4589–4594.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, J., Otsuka, F., Inagi, K., et al., Novel Action of Activin and Bone Morphogenetic Protein in Regulating Aldosterone Production by Human Adrenocortical Cells, J. High Resolut. Chromatogr. Chromatogr. Commun., 2004, vol. 145, pp. 639–649.

    CAS  Google Scholar 

  • Vanttinen, T., Liu, J., Kuulasmaa, T., et al., Expression of Activin/Inhibin Signaling Components in the Human Adrenal Gland and the Effects of Activins and Inhibins on Adrenocortical Steroidogenesis and Apoptosis, J. Endocrinol., 2003, vol. 178, no. 3, pp. 479–489.

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen, A., Kaufman, J., Goemaere, S., et al., Estradiol in Elderly Men, Aging Male, 2002, vol. 5, no. 2, pp. 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F., Tajar, A., Pye, S., et al., Hypothalamic-Pituitary-Testicular Axis Disruptions in Older Men are Differentially Linked to Age and Modifiable Risk Factors: The European Male Aging Study, J. Clin. Endocrinol. Metab., 2008, vol. 93, pp. 2737–2745.

    Article  CAS  PubMed  Google Scholar 

  • Yavus, B., Ozakayar, N., Halil, M., et al., Free Testosterone Levels and Implications on Clinical Outcomes in Elderly Men, Aging Clin. Exp. Res., 2008, vol. 20, no. 3, pp. 201–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Smirnova.

Additional information

Original Russian Text © R.V. Petrov, I.N. Kuzina, V.V. Kilikovsky, O.V. Smirnova, 2009, published in Ontogenez, 2009, Vol. 40, No. 6, pp. 456–465.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, R.V., Kuzina, I.N., Kilikovsky, V.V. et al. Age-dependent changes in the concentration of active sex steroids, precursors, metabolites, and regulatory agents in blood serum of male subjects. Russ J Dev Biol 40, 373–381 (2009). https://doi.org/10.1134/S1062360409060071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360409060071

Key words

Navigation