Skip to main content
Log in

Unisexual reproduction: Either maternal or paternal inheritance

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Parthenogenesis is usually recognized as the most accepted mechanism of cloning, i.e., reproduction without genetic recombination. Transfer from bisexual to parthenogenetic propagation causes the appearance of all-female populations, races, and species. It was ascertained in natural populations of numerous of reptile and insect species. Clonal and hemiclonal species of fishes and amphibians propagate by means of gynogenesis and hybridogenesis. Less known are instances of androgenesis found in some insects and mollusks. In this case offspring develops only under control of male genes supplied by spermatozoa. Mother’s genes included into the egg nucleus have to be entirely lost. Androgenesis may be called mirroring of parthenogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus, R.A. and Schultz, R.J., Clonal Diversity in the Unisexual Fish Poeciliopsis monacha-lucida (a Tissue Graft Analysis), Evolution, 1979, vol. 33, no. 1, pp. 27–40.

    Article  Google Scholar 

  • Astaurov, B.L., New Data on Artificial Fertilization in Silkworm, Dokl. Akad. Nauk SSSR, 1936a, vol. 2, no. 7, pp. 277–280.

    Google Scholar 

  • Astaurov, B.L., Artificial Parthenogenesis and Androgenesis in Silkworm, Byul. VASKhNIL, 1936b, no. 12, pp. 47–52.

  • Astaurov, B.L., Experiments on Androgenesis and parthenogenesis in the Silkworm, Biol. Zh., 1937, vol. 6, no. 1, pp. 1–50.

    Google Scholar 

  • Astaurov, B.L., Tsitogenetika razvitiya tutovogo shelkopryada i ee eksperimental’nyi kontrol’ (Cytogenetics of Silkworm Development and Its Experimental Control), Moscow: Nauka, 1968.

    Google Scholar 

  • Berger, L., Embryonic and Larval Development of F1 Generation of Green Frogs Different Combinations, Acta Zool. Cracoviensia, Kracow., 1967, vol. 12, no. 7, pp. 123–160.

    Google Scholar 

  • Borkin, L.Ya. and Darevskii, I.S., Network (Hybridogenic) Speciation in Vertebrates, Zh. Obshch. Biol., 1980, vol. 41, no. 4, pp. 485–506.

    Google Scholar 

  • Borkin, L.Ya., Vinogradov, A.E., Rozanov, Yu.M., et al., Semiclonal Inheritance in Hybryd complex Rana esculenta (Flow DNA Cytometry Evidence), Dokl. Akad. Nauk SSSR, 1987, vol. 295, no. 5, pp. 1261–1264.

    Google Scholar 

  • Brykov, V.A., Apalikova, O.V., Eliseikina, M.G., et al., Mitochondrial DNA Variation in Diploid and Triploid Forms of Silver Crucian Carp Carassius auratus gibelio, Genetika, 2005, vol. 41, no. 6, pp. 811–816.

    PubMed  Google Scholar 

  • Cherfas, N.B., Gynogenesis in Fish, Kirpichnikov V.S., Genetika i selektsiya ryb (Fish Genetics and Selection), Leningrad: Nauka, 1987, pp. 309–335.

    Google Scholar 

  • Cuellar, O., The origin of Parthenogenesis in Vertebrates (the Cytogenetic Factors), Am. Natur., 1974, vol. 108, pp. 625–648.

    Article  Google Scholar 

  • Dobzhansky, Th., Genetics and the Origin of Species, New York: Columbia Univ. Press, 1937.

    Google Scholar 

  • Golovinskaya, K.A. and Romashov, D.D. (with the participation of Musselius, V.A.), A Study on Gynogenesis in Goldfish, Tr. VNII prud. ryb. khoz-va, 1947, vol. 4, pp. 73–113.

    Google Scholar 

  • Golovinskaya, K.A., Romashov, D.D., and Cherfas, N.B., Unisexual and Bisexual Forms in Goldfish (Carassius auratus gibelio Bloch), Vopr. Ikhtiol., 1965, vol. 5, pp. 614–629.

    Google Scholar 

  • Grant, V., Organismic evolution. San Francisco: Freeman, 1977. Translated under the title Evolyutsiya organizmov, Moscow: Mir, 1980.

    Google Scholar 

  • Grebelnyi, S.D., How Many Clonal Species Are There in the World? Part 1. The Difference between Clonal Forms and Bisexual Species, Zh. zoologii bespozvonochnykh, 2005, vol. 2, no. 1, pp. 79–102.

    Google Scholar 

  • Grebelnyi, S.D., How Many Clonal Species Are There in the World? Part 2. Cloning in Nature and Its Role in Formation of Biodiversity, Zh. zoologii bespozvonochnykh, 2006, vol. 3, no. 1, pp. 77–109.

    Google Scholar 

  • Hasimoto, H., Formation of an Individual by the Union of Two Sperm Nuclei in the Silkworm, Bull. Sericult. Exp. Stat. Jpn., 1934, vol. 8, no. 10, pp. 455–464.

    Google Scholar 

  • Hubbs, C.L. and Hubbs, L.C., Apparent Parthenogenesis in Nature in a Form of Fish of Hybrid Origin, Science, 1932, vol. 76, pp. 628–630.

    Article  PubMed  Google Scholar 

  • Hubbs, C.L. and Hubbs, L.C., Breeding Experiments with the Invariably Female Strictly Matroclinous Fish, Mollienesia formosa, Genetics, 1946, vol. 31, no. 2, pp. 218.

    Google Scholar 

  • Ikematsu, W. and Yamane, S., Ecological Studies of Corbicula leana Prime. III, Bull. Jpn. Soc. Fish., 1977, vol. 43, pp. 1139–1146.

    Google Scholar 

  • Komaru, A. and Konishi, K., Non-Reductional Spermatozoa in Three Shell Color Types of the Freshwater Clam Corbicula fluminea, Zool. Sci. (Jpn.) 1999, vol. 16, no. 1, pp. 105–108.

    Google Scholar 

  • Komaru, A., Konishi, K., Nakayama, I., et al., Hermaphroditic Freshwater Clams in the Genus Corbicula Produce Non-Reductional Spermatozoa with Somatic DNA Content, Biol. Bull., 1997, vol. 193, pp. 320–323.

    Article  Google Scholar 

  • Komaru, A., Kawagishi, T., and Konishi, K., Cytological Evidence of Spontaneous Androgenesis in the Freshwater Clam Corbicula leana Prime, Devel. Genes Evol., 1998, vol. 208, pp. 46–50.

    Article  CAS  Google Scholar 

  • Kraemer, L.R. and Galloway, M.L., Larval Development of Corbicula fluminea (Muller) (An Appraisal of Its Heterochrony), Am. Malac. Bull., 1986, vol. 4, pp. 61–79.

    Google Scholar 

  • Lada, G.A., Borkin, L.J., and Vinogradov, A.E., Distribution, Population Systems and Reproductive Behavior of Green Frogs (Hybridogenetic Rana esculenta Complex) in the Central Chernozem Territory of Russia, Russ. J. Herpetol., 1995, vol. 2, no. 1, pp. 46–57.

    Google Scholar 

  • Lebedeva, E.B., Structure and Distribution of Clonal-Bisexual Complexes of Cobitis Fishes (Cobitidae), Avtoref. diss. kand. biol. Nauk, Moscow: Izd-vo MGU, 2007.

    Google Scholar 

  • Macgregor, H.C. and Uzzell, T.M., Gynogenesis in Salamanders Related to Ambystoma jeffersonianum, Science, 1964, vol. 143, pp. 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani, B. and Scali, V., Hybridogenesis and Androgenesis in the Stick Insect Bacillus rossius-grandii benazzii (Insecta, Phasmatodea), Evolution, 1992, vol. 46, pp. 783–796.

    Article  Google Scholar 

  • Mantovani, B., Scali, V., and Tinti, F., Allozyme Analysis and Phyletic Relationships of Two New Stick-Insects from North-West Sicily (Bacillus grandii benazzii and B. rossiusgrandii benazzii (Insecta Phasmatodea), J. Evol. Biol., 1991, vol. 4, pp. 279–290.

    Article  Google Scholar 

  • Maynard Smith, J., The Evolution of Sex, Cambridge: Cambridge University Press, 1978. Translated under the title Evolyutsiya polovogo razmnozheniya, Moscow: Mir, 1981.

    Google Scholar 

  • Mayr, E., Systematics and the Origin of Species from the Viewpoint of Zoologist, New York: Columbia University Press, 1942.

    Google Scholar 

  • Mayr, E., Animal Speciation and Evolution, Cambridge: Belknap Press of Harvard University Press, 1963.

    Google Scholar 

  • Miller, R.R. and Schultz, R.J., All-Female Strains of the Teleost Fishes of the Genus Poeciliopsis, Science, 1959, vol. 130, no. 3389, pp. 1956–1957.

    Google Scholar 

  • Miyazaki, I., On the Development of Bivalves Belonging to the Genus Corbicula, Bull. Jpn. Soc. Sci. Fish., 1936, vol. 5, pp. 249–254.

    Google Scholar 

  • Murakami, M., Matsuba, C., and Fujitani, H., The Maternal Origins of the Triploid Ginbuna Carassius auratus langsdorfi: Phylogenetic Relationships with the Carassius auratus Taxa by Partial Mitochondrial D-Loop Sequencing, Genes Genet. Syst., 2001, vol. 76, pp. 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Okamato, A. and Arimoto, B., Chromosomes of Corbicula japonica, C. sandai and C. leana (Bivalvia Corbiculidae), Venus, 1986, vol. 45, pp. 194–202.

    Google Scholar 

  • Sanderson, A.R., The Cytology of a Diploid Bisexual Spider Beetle Ptinus clavipes Panzer and Its Triploid Gynogenetic form mobilis Moor, Proc. Roy. Soc. Edinburgh (Ser. B, Biology)., 1960, vol. 67, pp. 333–350.

    Google Scholar 

  • Scali, V., Un Nuovo Insetto Stecco (Phasmatodea) della Sicilia (Bacillus grandii benazzii (n. subsp.), Frustula Entomol. (New ser.), 1991, vol. 12, pp. 397–408.

    Google Scholar 

  • Schultz, R.J., Reproductive Mechanism of Unisexual and Bisexual Strains of the Viviparous Fish Poeciliopsis, Evolution, 1961, vol. 15, no. 2, pp. 302–325.

    Article  Google Scholar 

  • Schultz, R.J., Hybridization Experiments with an All-Female Fish of the Genus Poeciliopsis, Biol. Bull., 1966, vol. 130, no. 3, pp. 415–429.

    Article  Google Scholar 

  • Schultz, R.J., Hybridization, Unisexuality, and Polyploidy in the Teleost Poeciliopsis (Poeciliidae) and Other Vertebrates, Am. Natur., 1969, vol. 108, pp. 605–619.

    Article  Google Scholar 

  • Schultz, R.J., Evolution and Ecology in Unisexual Fishes, Vol. 10. Evolutionary biology, Hecht, K.M. et al., Eds., New York: Plenum, 1977, pp. 277–331.

    Google Scholar 

  • Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944. Translated under the title Tempy i formy evolyutsii, Moscow: Gos. izd-vo inostr. lit-ry, 1948.

    Google Scholar 

  • Sofradžija, A. and Berberovič, L., Diploid-Triploid Sexual Dimorphism in Cobitis taenia taenia L. (Cobitidae, Pisces), Genetica (Ned.), 1978, vol. 10, no. 3, pp. 389–397.

    Google Scholar 

  • Strunnikov, V.A., Obtaining of Bipaternal Androgenetic Hybrids in the Silkworm, Dokl. Akad. Nauk SSSR, 1958, vol. 122, no. 3, pp. 516–519.

    Google Scholar 

  • Suomalainen, E., Evolution in Parthenogenetic Curculionidae, vol. 3. Evolutionary biology, Dobzhansky, T., et al., Eds., Amsterdam: North-Holland, 1969, pp. 261–296.

    Google Scholar 

  • Suomalainen, E. and Saura, A., Genetic Polymorphism and Evolution in Parthenogenetic Animals. I. Polyploid Curculionidae, Genetics, 1973, vol. 74, pp. 489–508.

    PubMed  Google Scholar 

  • Suomalainen, E., Saura, A., and Lokki, J., Evolution of Parthenogenetic Insects, vol. 9. Evolutionary Viology, Hecht, M. et al., Eds., New York: Plenum, 1976, pp. 209–257.

    Google Scholar 

  • Timoféeff-Ressovsky, N.W., Genetik und Evolution (Bericht eines Zoologen), Zeitschrift fur induktive Abstammungs- und Vererbungslehre., 1939, vol. 76, pp. 158–218.

    Article  Google Scholar 

  • Timoféeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Short Outline of Theory of Evolution), Moscow: Nauka, 1969.

    Google Scholar 

  • Timoféeff-Ressovsky, N.V., Yablokov, A.V., and Glotov, N.V., Ocherk ucheniya o populyatsii (An Essay on the Population Theory), Moscow: Nauka, 1973.

    Google Scholar 

  • Vasetskii S.G. Meiotic Divisions, Sovremennye problemy oogeneza (Current Problems of Oogenesis), Moscow: Nauka, 1977, pp. 145–173.

    Google Scholar 

  • Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes) Moscow: Nauka, 1985.

    Google Scholar 

  • Vasil’ev, V.P. and Vasil’eva, E.D., A New Diploid-Polyploid Complex in Fish, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 1, pp. 250–252.

    Google Scholar 

  • Vasil’ev, V.P., Lebedeva, E.B., Vasil’eva, E.D., et al., Monoclonal and de novo Arising Tetraploid Forms of the Genus Cobitis (Cobitidae) from Different Clonal-Bisexual Complexes, Dokl. Akad. Nauk, 2007, vol. 416, no. 4, pp. 559–562.

    Google Scholar 

  • Vasil’eva, E.D. and Vasil’ev, V.P., On the Problem of Origin and Txonomic Status of Triploid Form of Goldfish Carassius auratus (Cyprinidae), Vopr. ikhtiol., 2000, vol. 40, pp. 581–592.

    Google Scholar 

  • Vinogradov, A.E., Borkin, L.J., Gunter, R., et al. Genome Elimination in Diploid and Triploid Rana esculenta Males (Cytological Evidence from DNA Flow Cytometry), Genome, 1990, vol. 33, pp. 619–627.

    PubMed  CAS  Google Scholar 

  • Vorontsov, N.N., Synthetic Theory of Evolution: Sources, Main Postulates, and Pending Problems, Zh. Vsesoyuz. khim. o-va, 1980, vol. 25, no. 3, pp. 295–314.

    CAS  Google Scholar 

  • Vrijenhoek, R.C., Genetic Relationships of Unisexual Hybrid Fishes to Their Progenitors Using Lactate Dehydrogenase Isozymes as Gene Markers (Poeciliopsis, Poeciliidae), Am. Natur., 1972, vol. 106, no. 952, pp. 754–766.

    Article  Google Scholar 

  • Zhou, L., Wang, Y., and Gui, J.-F., Genetic Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays, J. Mol. Evol., 2000, vol. 51, pp. 498–506.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Grebelnyi.

Additional information

Original Russian Text © S.D. Grebelnyi, 2009, published in Ontogenez, 2009, vol. 39, No. 3, pp. 185–190.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebelnyi, S.D. Unisexual reproduction: Either maternal or paternal inheritance. Russ J Dev Biol 40, 145–149 (2009). https://doi.org/10.1134/S1062360409030023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360409030023

Key words

Navigation