Skip to main content
Log in

Spatial-temporal dynamics of morphogenetic blastoderm potencies in early embryogenesis of the loach

  • Morphogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The degree of differentiation of axial structures (notochord, neuroectoderm, and somites) in 24-hour explants (a total of 380) of the loach embryonic blastoderm was determined on histological sections according to a developed scale of estimates. Before the beginning of epiboly, axial structures were formed only from fragments of the dorsal sector of the blastoderm marginal zone. Its other sectors acquired the capacity of forming axial structure only with the beginning of epiboly, as the germ ring was formed in the marginal zone, unlike the cells outside the germ ring. The degree of differentiation of axial structures in the dorsal sector of marginal zone increased reliably with the appearance of embryonic shield, i.e. area of the convergence of cell flows. Here, statistically significant regional differences in morphogenetic potencies of the marginal zone first appeared, which corresponded to the differences in prospective significance of its materials; notochord and neuroectoderm better differentiate from the dorsal sector material, while somites better differentiate from the ventral sector material. Thus, distribution of morphogenetic potencies reflects precisely the spatial-temporal dynamics of collective movement of the blastoderm cells during the normal course of morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnol’, V.I., Teoriya katastrof (Theory of Catastrophes), Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  • Ballard, W.W., Morphogenetic Movements in Salmo gairdneri Richardson, J. Exp. Zool., 1973, vol. 184, pp. 27–48.

    Article  Google Scholar 

  • Ballard, W.W., Morphogenetic Movements and Fate Maps of Vertebrates, Am. Zool., 1980, vol. 21, pp. 391–399.

    Google Scholar 

  • Beloussov, L.V., The Dynamic Architecture of a Developing Organism, New York: Kluwer, 1998.

    Google Scholar 

  • Beloussov, L.V., Dorfman, J.G., and Cherdantsev, V.G., Mechanical Stresses and Morphological Patterns in Amphibian Embryos, J. Embryol. Exp. Morphol., 1975, vol. 34, pp. 559–574.

    PubMed  CAS  Google Scholar 

  • Cherdantsev, V.G., Morfogenez i evolyutsiya (Morphogenesis and Evolution), Moscow: KMK, 2003.

    Google Scholar 

  • Cherdantsev, V.G., The Dynamic Geometry of Mass Cell Movements in Animal Morphogenesis, Int. J. Devel. Biol., 2006, vol. 50, pp. 169–182.

    Article  Google Scholar 

  • Cherdantsev, V.G. and Tsvetkova, N.V., Dynamics and Variability of Morphogenesis in the Loach according to the Observations over Individual Developmental Trajectories, Ontogenez, 2005, vol. 36, no. 3, pp. 211–221.

    PubMed  CAS  Google Scholar 

  • Cherdantseva, E.M. and Cherdantsev, V.G., Determination of Dorsoventral Polarity in the Teleostean Brachydanio rerio, Ontogenez, 1985, vol. 16, no. 3, pp. 270–280.

    Google Scholar 

  • Cherdantseva, E.M. and Cherdantsev, V.G., Geometry and Mechanics of Teleost Gastrulation and the Formation of Primary Embryonic Axes, Int. J. Devel. Biol., 2006, vol. 50, pp. 157–168.

    Article  Google Scholar 

  • Driesch, G., Vitalizm. Ego istoriya i sistema (Vitalism. Its History and System), Moscow: Nauka, 1915.

    Google Scholar 

  • Fujimoto, T., Kataoka, T., Otani, S., et al., Embryonic Stages from Cleavage to Gastrula in the Loach Misgurnus anguillicaudatus, Zool. Sci., 2004, vol. 21, pp. 747–55.

    Article  PubMed  Google Scholar 

  • Hemmati-Brivanlou A., Melton D. Vertebrate Embryonic Cells Will Become Nerve Cells unless Told Otherwise, Cell, 1997, vol. 88, pp. 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Holtfreter, J., Differenzierungspotenzen isolierter Teile der Urodelengastrula, W. Roux Arch. Entw.-Mech. Org, 1938a, vol. 138, pp. 522–656.

    Article  Google Scholar 

  • Holtfreter, J., Differenzierungspotenzen isolierter Teile der Anurengastrula, W. Roux Arch. Entw.-Mech. Org., 1938b, vol. 138, pp. 657–738.

    Article  Google Scholar 

  • Kimmel, C.B., Warga, R.M., and Schilling, T.F., Origin and Organization of the Zebrafish Fate Map, Development, 1990, vol. 108, pp. 581–594.

    PubMed  CAS  Google Scholar 

  • Kostomarova, A.A., Loach (Misgurnus fossilis L.), Ob’ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 308–323.

    Google Scholar 

  • Kostomarova, A.A. The Loach Misgurnus fossilis, Animal Species for Developmental Studies, vol. 2. Vertebrates, New York: Consultants Bureau, 1991, pp. 125–144.

    Google Scholar 

  • Neklyudova, I.V., Korvin-Pavlovskaya, E.A., and Cherdantsev, V.G., Dorsoventral Differences In Morphogenetic Potencies of Loach Blastoderm in Experiments with Explanation of Its Fragments, Ontogenez, 1999, vol. 30, no. 5, pp. 353–361.

    Google Scholar 

  • Oppenheimer, J.M. Organization of the Teleost Blastoderm, Quart. Rev. Biol., 1947, vol. 22, pp. 105–118.

    Article  Google Scholar 

  • Oppenheimer, J.M., Fifty years of Fundulus, Quart. Rev. Biol., 1979, vol. 54, pp. 385–395.

    Article  Google Scholar 

  • Schmitz, B. and Campos-Ortega, J., Dorsoventral Polarity of the Zebrafish Embryo Is Distinguishable prior to the Onset of Gastrulation, W. Roux’ Arch. Devel. Biol., 1994, vol. 203, pp. 374–380.

    Article  Google Scholar 

  • Schulte-Merker, S., Ho, R.K., Herrmann, B.R., and Nusslein-Volhard, C., The Protein Product of the Zebrafish Homologue of Mouse T Genes Is Expressed in Nuclei of the Germ Ring and the Notochord of the Early Embryo, Development, 1992, vol. 116, pp. 1021–1032.

    PubMed  CAS  Google Scholar 

  • Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., et al., Expression of Zebrafish goosecoid and no tail Gene Products in Wild-Type and Mutant no tail Embryos, Development, 1994, vol. 120, pp. 843–852.

    PubMed  CAS  Google Scholar 

  • Spemann, H., Experimentelle Beitraege zu einer Theorie der Entwicklung, Berlin: Springer, 1936.

    Google Scholar 

  • Stachel, S.E., Grunwald, D.J., and Myers, P.Z., Lithium Perturbation and goosecoid Expression Identify a Dorsal Specification Pathway in the Pregastrula Zebrafish, Development, 1993, vol. 117, pp. 1261–1274.

    PubMed  CAS  Google Scholar 

  • Thompson, D’A. W., On Growth and Form, Cambridge: Univ., 1942.

    Google Scholar 

  • Trinkaus, J.P., The Yolk Syncytial Layers of Fundulus: Its Origin and History and Its Significance for Early Embryogenesis, J. Exp. Zool., 1993, vol. 265, pp. 258–284.

    Article  PubMed  CAS  Google Scholar 

  • Tung, T.C. and Tung, W.F.W., The Development of Egg Fragments, Isolated Blastomeres and Fused Eggs in the Gold Fish, Proc. Zool. Soc., London, 1944, vol. 114, pp. 46–64.

    Google Scholar 

  • Wolpert, L., One Hundred Years of Positional Information, Trends Genet., 1996, vol. 12, pp. 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Wray, G.A., Hahn, M.W., Abouheif, E., et al., The Evolution of Transcriptional Regulation in Eukaryotes, Mol. Biol. Evol., 2003, vol. 20, no. 9, pp. 1377–1419.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Neklyudova.

Additional information

Original Russian Text © I.V. Neklyudova, E.G. Korvin-Pavlovskaya, V.G. Cherdantsev, 2007, published in Ontogenez, 2007, Vol. 38, No. 5, pp. 355–371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neklyudova, I.V., Korvin-Pavlovskaya, E.G. & Cherdantsev, V.G. Spatial-temporal dynamics of morphogenetic blastoderm potencies in early embryogenesis of the loach. Russ J Dev Biol 38, 294–309 (2007). https://doi.org/10.1134/S1062360407050049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360407050049

Key words

Navigation