Skip to main content
Log in

Transgene 6A-99 is a molecular marker of developing somatosensory cortex in mice

  • Developmental Genetics
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Among dozens of known genes, active in the developing cortex, very few possessed expression strictly limited by one functional area of the cortex. We found that in 6A-99 transgenic mice, LacZ-reported gene was expressed selectively in the somatosensory cortex. In the primary somatosensory cortex, expression was localized in the barrel field, including the zone of representation of vibrissae, fore and hind limbs, jaws, and head. In addition, LacZ-expressing cells were found in the secondary somatosensory cortex, as well as in the nuclei of hypothalamus and dorsal and caudal raphe nuclei. In the cortex, expression of transgene 6A-99 began on day 3 of postnatal development (P3) and embraced only the area of primary somatosensory cortex: zones of representation of the snout, vibrissae, and lower jaw. On P5, pronounced expression 6A-99 was detected in the secondary somatosensory cortex and zone of representation of fore paws. Expression in the zone of representation of hind paws was observed on P7. Expression of 6A-99 in the somatosensory cortex disappeared by P50, the age of final functional maturation of the cerebral cortex. Our results suggest that the regulation of transcription in the developing mouse somatosensory cortex differs from those in other cortical areas. Transgene 6A-99 may serve as a specific molecular marker of the developing somatosensory cortex in mice and can be used for studying the mechanisms underlying genetic and epigenetic control of the neocortex functional regionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, P.K., Physiological Gradient, Reflex, and Functional System as Factors of Embryonic Development of Unconditioned Reactions, Zh. Obshch. Biol., 1949, vol. 10, no. 5, pp. 361–385.

    Google Scholar 

  • Anokhin, P.K., Biologiya i fiziologiya uslovnogo refleksa (Biology and Physiology of a Conditioned Reflex), Moscow: Meditsina, 1968.

    Google Scholar 

  • Auladell, C., Perez-Sust, P., Super, H., et al., The Early Development of Thalamocortical and Corticothalamic Projections in the Mouse, Anat. Embryol. (Berlin), 2000, vol. 201, pp. 169–179.

    Article  CAS  Google Scholar 

  • Brodmann, K., Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien Dargestellt auf Grund des Zeilenbaues, Leipzig: Barth, 1909.

    Google Scholar 

  • Cohen-Tannoudji, M., Babinet, C., and Wassef, M., Early Determination of a Mouse Somatosensory Cortex Marker, Nature, 1994, vol. 368, pp. 460–463.

    Article  PubMed  CAS  Google Scholar 

  • del Rio, J.A., de Lecea, L., Ferrer, I., and Soriano, E., The Development of Parvalbumin-Immunoreactivity in the Neocortex of the Mouse, Brain Res. Devel. Brain Res., 1994, vol. 81, pp. 247–259.

    Google Scholar 

  • Donatelle, J.M., Growth of the Corticospinal Tract and the Development of Placing Reactions in the Postnatal Rat, J. Comp. Neur., 1977, vol. 175, pp. 207–232.

    Article  PubMed  CAS  Google Scholar 

  • Durinyan, R.A. and Rabin, A.G., Problem of Dual Representation of Brain Projection Systems, Usp. Fiziol. Nauk., 1971, vol. 2, no. 2, pp. 3–25.

    Google Scholar 

  • Eagleson, K.L. and Levitt, P., Complex Signaling Responsible for Molecular Regionalization of the Cerebral Cortex, Cereb. Cortex, 1999, vol. 9, pp. 562–568.

    Article  PubMed  CAS  Google Scholar 

  • Erzurumlu, R.S. and Kind, P.C., Neural Activity: Sculptor of ‘Barrels’ in the Neocortex, Trends Neurosci., 2001, vol. 24, pp. 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, K.B.J. and Paxinos, G., The Mouse Brain in Stereotaxic Coordinates, San Diego: Academic, 1997.

    Google Scholar 

  • Gitton, Y., Cohen-Tannoudji, M., and Wassef, M., Role of Thalamic Axons in the Expression of H-2Z1, a Mouse Somatosensory Cortex Specific Marker, Cereb. Cortex, 1999a, vol. 9, pp. 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Gitton, Y., Cohen-Tannoudji, M., and Wassef, M., Specification of Somatosensory Area Identity in Cortical Explants, J. Neurosci., 1999b, vol. 19, pp. 4889–4898.

    PubMed  CAS  Google Scholar 

  • Gulisano, M., Broccoli, V., Pardini, C., et al., Emx1 and Emx2 Show Different Patterns of Expression during Proliferation and Differentiation of the Developing Cerebral Cortex in the Mouse, Eur. J. Neurosci., 1996, vol. 8, pp. 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E.G., Schreyer, D.J., and Wise, S.P., Growth and Maturation of the Rat Corticospinal Tract, Prog. Brain Res., 1981, vol. 57, pp. 361–379.

    Article  Google Scholar 

  • Kononova, E.P., Lobnaya oblast’ bol’shogo mozga (Frontal Area of Brain), Leningrad: Medgiz, 1962.

    Google Scholar 

  • Krubitzer, L. and Huffman, K.J., Arealization of the Neocortex in Mammals: Genetic and Epigenetic Contributions to the Phenotype, Brain Behav. Evol., 2000, vol. 55, pp. 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer, L. and Kaas, J., The Evolution of the Neocortex in Mammals: How Is Phenotypic Diversity Generated, Curr. Opin. Neurobiol., 2005, vol. 15, pp. 444–453.

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer, L. and Kahn, D.M., Nature Versus Nurture Revisited: An Old Idea with a New Twist, Prog. Neurobiol., 2003, vol. 70, pp. 33–52.

    Article  PubMed  Google Scholar 

  • Larsen, P.J., Hay-Schmidt, A., Vrang, N., and Mikkelsen, J.D., Origin of Projections from the Midbrain Raphe Nuclei to the Hypothalamic Paraventricular Nucleus in the Rat: A Combined Retrograde and Anterograde Tracing Study, Neuroscience, 1996, vol. 70, pp. 963–988.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Dwyer, N.D., and O’Leary, D.D.M., Differential Expression of COUP-TFI, CHL1 and Two Novel Genes in Developing Neocortex Identified by Differential Display PCR, J. Neurosci., 2000, vol. 20, pp. 7682–7690.

    PubMed  CAS  Google Scholar 

  • Mackarehtschian, K., Lau, C.K., Caras, I., et al., Regional Differences in the Developing Cerebral Cortex Revealed by Ephrin-A5 Expression, Cereb. Cortex, 1999, vol. 9, pp. 601–610.

    Article  PubMed  CAS  Google Scholar 

  • Maksimova, E.V., Ontogenez bol’shikh polusharii (Ontogenesis of Cerebral Cortex), Moscow: Nauka, 1990.

    Google Scholar 

  • Mallamaci, A., Iannone, R., Briata, P., et al., EMX2 Protein in the Developing Mouse Brain and Olfactory Area, Mech. Devel., 1998, vol. 77, pp. 165–172.

    Article  CAS  Google Scholar 

  • McCandlish, C., Waters, R.S., and Cooper, N.G., Early Development of the Representation of the Body Surface in SI Cortex Barrel Field in Neonatal Rats as Demonstrated with Peanut Agglutinin Binding: Evidence for Differential Development within the Rattunculus, Exp. Brain Res., 1989, vol. 77, pp. 425–431.

    Article  PubMed  CAS  Google Scholar 

  • McCandlish, C.A., Li, C.X., and Waters, R.S., Early Development of S1 Cortical Barrel Field Representation in Neonatal Rats Follows a Lateral-to-Medial Gradient: An Electrophysiology Study, Exp. Brain Res., 1993, vol. 92, pp. 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Johnson, J.E., and O’Leary, D.D.M., Graded and Areal Expression Patterns of Regulatory Genes and Cadherins in Embryonic Neocortex Independent of Thalamocortical Input, J. Neurosci., 1999, vol. 19, pp. 10 877–10 885.

    CAS  Google Scholar 

  • Nothias, F. and Fishell, G., and Ruiz i Altaba, A., Cooperation of Intrinsic and Extrinsic Signals in the Elaboration of Regional Identity in the Posterior Cerebral Cortex, Curr. Biol., 1998, vol. 8, pp. 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Nowicka, D., Liguz-Lecznar, M., and Skangiel-Kramska, J., A Surface Antigen Delineating a Subset of Neurons in Primary Somatosensory Cortex of the Mouse, Acta Neurobiol. Exp., 2003, vol. 63, pp. 185–195.

    Google Scholar 

  • O’Leary, D.D., Do Cortical Areas Emerge from a Protocortex, Trends Neurosci., 1989, vol. 12, pp. 400–406.

    Article  PubMed  CAS  Google Scholar 

  • O’Leary, D.D. and Nakagawa, Y., Patterning Centers, Regulatory Genes, and Extrinsic Mechanisms Controlling Arealization of the Neocortex, Curr. Opin. Neurobiol., 2002, vol. 12, pp. 14–25.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, S.L., Intrinsic and Extrinsic Factors That Shape Neocortical Specification, Trends Neurosci., 2001, vol. 24, pp. 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, T., Krukoff, T.L., and Jhamandas, J.H., The Hypothalamic Paraventricular and Lateral Parabrachial Nuclei Receive Collaterals from Raphe Nucleus Neurons: A Combined Double Retrograde and Immunocytochemical Study, J. Comp. Neurol., 1992, vol. 318, pp. 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Polyakov, G.I., Ontogenez izokorteksa u cheloveka, in Trudy Instituta mozga (Ontogenesis of Isocortex in Humans), Moscow: In-t mozga, 1938.

    Google Scholar 

  • Porter, F.D., Drago, J., Xu, Y., et al., Lhx2, a LIM Homeobox Gene, Is Required for Eye, Forebrain, and Definitive Erythrocyte Development, Development, 1997, vol. 124, pp. 2935–2944.

    PubMed  CAS  Google Scholar 

  • Ragsdale, C.W. and Grove, E.A., Patterning the Mammalian Cerebral Cortex, Curr. Opin. Neurobiol., 2001, vol. 11, pp. 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Specification of Cerebral Cortical Areas, Science, 1988, vol. 241, pp. 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Rice, F.L. and Van der Loos, H., Development of the Barrels and Barrel Field in the Somatosensory Cortex of the Mouse, J. Comp. Neur., 1977, vol. 171, pp. 545–560.

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein, J.L.R., Development of Serotonergic Neurons and Their Projections, Biol. Psychiatry, 1998, vol. 44, pp. 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein, J.L. and Rakic, P., Genetic Control of Cortical Development, Cereb. Cortex, 1999, vol. 9, pp. 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein, J.L.R., Anderson, S., Shi, L., et al., Genetic Control of Cortical Regionalization and Connectivity, Cereb. Cortex, 1999, vol. 9, pp. 524–532.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, M., Meyer, B.I., and Gruss, P., Efficient PolyA Trap Approach Allows the Capture of Genes Specifically Active in Differentiated Embryonic Stem Cells and in Mouse Embryos, Devel. Dynamics, 1998, vol. 212, pp. 326–333.

    Article  CAS  Google Scholar 

  • Schreyer, D.J. and Jones, E.G., Topographic Sequence of Outgrowth of Corticospinal Axons in the Rat: A Study Using Retrograde Axonal Labeling with Fast Blue, Devel. Brain Res., 1988, vol. 38, pp. 89–101.

    Article  Google Scholar 

  • Shuleikina, K.V., Sistemnaya organizatsiya pishchevogo povedeniya (Systemic Organization of Feeding Behavior), Moscow: Nauka, 1971.

    Google Scholar 

  • Slonim, A.D., Osnovy obshchei ekologicheskoi fiziologii mlekopitayushchikh (Foundations of General Ecological Physiology in Mammals), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  • Steindler, D.A., Cooper, N.G., Faissner, A., et al., Boundaries Defined by Adhesion Molecules during Development of the Cerebral Cortex: The J1/Tenascin Glycoprotein in the Mouse Somatosensory Cortical Barrel Field, Devel. Biol., 1989, vol. 131, pp. 243–260.

    CAS  Google Scholar 

  • Stoykova, A. and Gruss, P., Roles of Pax Genes in Developing and Adult Brain as Suggested by Expression Patterns, J. Neurosci., 1994, vol. 14, pp. 1395–1412.

    PubMed  CAS  Google Scholar 

  • Suzuki, S.C., Inoue, T., Kimura, Y., et al., Neuronal Circuits Are Subdivided by Differential Expression of Type-II Classic Cadherins in Postnatal Mouse Brains, Mol. Cell Neurosci., 1997, vol. 9, pp. 433–447.

    Article  PubMed  CAS  Google Scholar 

  • Volokhov, A.A., Ocherki po fiziologii nervnoi sistemy (Essays on Physiology of Nervous System), Leningrad: Meditsina, 1968.

    Google Scholar 

  • Waite, P.M., Normal Nerve Fibers in the Barrel Region of Developing and Adult Mouse Cortex, J. Comp. Neurol., 1977, vol. 173, pp. 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Walther, C. and Gruss, P., Pax-6, a Murine Paired Box Gene, Is Expressed in the Developing CNS, Development, 1991, vol. 113, pp. 1435–1449.

    PubMed  CAS  Google Scholar 

  • Wise, S.P. and Jones, E.G., Developmental Studies of Thalamocortical and Commissural Connections in the Rat Somatic Sensory Cortex, J. Comp. Neurol., 1978, vol. 178, pp. 187–208.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M., Changes in the Visual System of Monocularly Sutured or Enucleated Cats Demonstrable with Cytochrome Oxidase Histochemistry, Brain Res., 1979, vol. 171, pp. 11–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Lazutkin, B.I. Meyer, K.V. Anokhin, 2007, published in Ontogenez, 2007, Vol. 38, No. 1, pp. 21–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazutkin, A.A., Meyer, B.I. & Anokhin, K.V. Transgene 6A-99 is a molecular marker of developing somatosensory cortex in mice. Russ J Dev Biol 38, 15–24 (2007). https://doi.org/10.1134/S1062360407010031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360407010031

Key words

Navigation