Skip to main content

Differentiation antigens of hemoblastoses and epithelial tumors: Relations to the mechanisms of transformation and progression

Abstract

The role of mechanisms underlying differentiation is considered in malignant transformation of hemoblastoses and epithelial tumors. In hemoblastoses, differentiation is intimately related to malignant transformation and they are underlain by the same mechanisms. Immunophenotyping of hemoblastoses is fully based on successive stages of their differentiation with characteristic expression of differentiation antigens. Unlike hemoblastoses, epithelial tumors gradually, in the course of progression, lose their differentiation due to the degradation of the connections with the microenvironment, which controls the direction and level of epithelial differentiation. Therefore, carcinomas are characterized by varying degrees of “antigenic simplification”, including the epithelial-mesenchymal transition.

This is a preview of subscription content, access via your institution.

References

  • Abelev, G.I., Antigenic Structure of Chemically Induced Hepatomas, Prog. Exp. Tumor Res., 1965, vol. 7, pp. 104–157.

    PubMed  CAS  Google Scholar 

  • Abelev, G.I., Mechanisms of Differentiation and Tumor Growth, Biokhimiya, 2000, vol. 65, pp. 126–137.

    Google Scholar 

  • Abelev, G.I., Differentiation Antigens in Tumors—Dependence from Mechanisms of Carcinogenesis and Progression: A hypothesis, Mol. Biol., 2003, vol. 37, pp. 4–11.

    Article  CAS  Google Scholar 

  • Abelev, G.I. and Eraizer, T.L., Cellular Aspects of alpha-Fetoprotein Reexpression in Tumors, Semin. Cancer Biol., 1999, vol. 9, pp. 95–108.

    PubMed  Article  CAS  Google Scholar 

  • Berenblum, I., A Speculative Review: The Probable Nature of Promoting Action and Its Significance in the Understanding of the Mechanism of Carcinogenesis, Cancer Res., 1954, vol. 14, pp. 471–477.

    PubMed  CAS  Google Scholar 

  • Bissell, M.J., Radisky, D.C., Rizki, A., et al., The Organizing Principle: Microenvironmental Influences in the Normal and Malignant Breast, Differentiation, 2002, vol. 70, pp. 537–546.

    PubMed  Article  Google Scholar 

  • Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M., Taking Cell-Matrix Adhesions to the Third Dimension, Science, 2001, vol. 294, pp. 1708–1712.

    PubMed  Article  CAS  Google Scholar 

  • Cunha, G.R., Hayward, S.W., Wang, Y.Z., and Ricke, W.A., Role of the Stromal Microenvironment in Carcinogenesis of the Prostate, Int. J. Cancer, 2003, vol. 107, pp. 1–10.

    PubMed  Article  CAS  Google Scholar 

  • Friedl, P. and Wolf, K., Tumour-Cell Invasion and Migration: Diversity and Escape Mechanisms, Nat. Rev. Cancer, 2003, vol. 3, pp. 362–374.

    PubMed  Article  CAS  Google Scholar 

  • Gleiberman, A. and Abelev, G., Cell Position and Cell Interactions in Expression of Fetal Phenotype of Hepatocyte, Int. Rev. Cytol., 1985, vol. 95, pp. 229–266.

    PubMed  CAS  Article  Google Scholar 

  • Gleiberman, A.S., Kudrjavtseva, E.I., Sharovskaya, Yu.Yu., and Abelev, G.I., The Synthesis of alpha-Fetoprotein in Hepatocytes Is Coordinately Regulated with Cell-Cell and Cell-Matrix Interactions, Mol. Biol. Med., 1989, vol. 6, pp. 95–107.

    PubMed  CAS  Google Scholar 

  • Gleiberman, A.S., Sharovskaya, Yu.Yu., and Chailakhjan, L.M., “Contact Inhibition” of β-Fetoprotein Synthesis and Junctional Communication in Adult Mouse Hepatocyte Culture, Exp. Cell. Res., 1989, vol. 184, pp. 228–234.

    PubMed  Article  CAS  Google Scholar 

  • Gotzmann, J., Mikula, M., Eger, A., et al., Molecular Aspects of Epithelial Cell Plasticity: Implications for Local Tumor Invasion and Metastasis, Mutat. Res., 2004, vol. 566, pp. 9–20.

    PubMed  Article  CAS  Google Scholar 

  • Greaves, M.F., Chan, L.C., Fureley, A.J., et al., Lineage Promiscuity in Hemopoietic Differentiation and Leukemia, Blood, 1986, vol. 67, pp. 1–11.

    PubMed  CAS  Google Scholar 

  • Greaves, M.F., Leukaemogenesis and Differentiation: A Commentary, Cancer Surveys, 1982, vol. 1, pp. 189–204.

    Google Scholar 

  • Guillouzo, A., Morel, F., Fardel, O., and Meunier, B., Use of Human Hepatocyte Cultures for Drug Metabolism Studies, Toxicology, 1993, vol. 82, pp. 209–219.

    PubMed  Article  CAS  Google Scholar 

  • Hammarström, S., The Carcinoembryonic Antigen (CEA) Family: Structures, Suggested Functions and Expression in Normal and Malignant Tissues, Semin. Cancer Biol., 1999, vol. 9, pp. 67–82.

    PubMed  Article  Google Scholar 

  • Hernandez-Barrantes, S., Bernando, M., Toth, M., and Fridman, R., Regulation of Membrane Type-Matrix Metalloproteinases, Semin. Cancer Biol., 2002, vol. 12, pp. 131–138.

    PubMed  Article  CAS  Google Scholar 

  • Iversen, P.O., Woldbeck, P.R., Tonnessen, T., and Christensen, G., Decreased Hematopoiesis in Bone Marrow of Mice with Congestive Heart Failure, Amer. J. Physiol. Regul. Integr. Comp. Physiol., 2002, vol. 282, pp. 166–172.

    Google Scholar 

  • Kenny, P.A. and Bissel, M.J., Tumor Reversion: Correction of Malignant Behavior by Microenvironmental Cues, Int. J. Cancer, 2003, vol. 107, pp. 688–695.

    PubMed  Article  CAS  Google Scholar 

  • Klein, G., The Role of Specific Chromosomal Translocation and Trisomies in the Origin of Some Murine and Human Tumors of Lymphoid Origin, Cancer Surveys, 1982, vol. 1, pp. 299–308.

    Google Scholar 

  • Korsmeyer, S.J., Chromosomal Translocation in Lymphoid Malignancies Reveal Novel Protooncogenes, Annu. Rev. Immunol., 1992, vol. 10, pp. 785–806.

    PubMed  Article  CAS  Google Scholar 

  • Krutovskikh, V., Implication of Direct Host-Tumor Intercellular Interactions in Non-Immune Host Resistance to Neoplastic Growth, Semin. Cancer Biol., 2002, vol. 12, pp. 267–276.

    PubMed  Article  CAS  Google Scholar 

  • Ku, N.O., Zhou, X., Toivola, D.M., and Omary, M.B., The Cytoskeleton of Digestive Epithelia in Health and Disease, Am. J. Physiol., 1999, vol. 277, pp. G1108–G1137.

    PubMed  CAS  Google Scholar 

  • Kudryavtseva, E.I. and Engelhardt, N.V., Requirement of 3D Extracellular Network for Maintenance of Mature Hepatocyte Morphology and Suppression of alpha-Fetoprotein Synthesis in vitro, Immunol. Lett., 2003, vol. 90, pp. 25–31.

    PubMed  Article  CAS  Google Scholar 

  • Laconi, S., Pani, P., and Pillai, S., A Growth-Constrained Environment Drives Tumor Progression in vivo, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 7807–7811.

    Article  Google Scholar 

  • Mintz, B. and Illmensee, K., Normal Genetically Mosaic Mice Produced from Malignant Teratocarcinoma Cells, Proc. Natl. Acad. Sci. USA, 1975, vol. 72, pp. 3585–3589.

    PubMed  CAS  Google Scholar 

  • Moorman, A.F., de Boer, P.A., Evans, D., et al., Expression Patterns of mRNAs for alpha-Fetoprotein and Albumin in the Developing Rat: The Ontogenesis of Hepatocyte Heterogeneity, Histochem. J., 1990, vol. 22, pp. 653–660.

    PubMed  Article  CAS  Google Scholar 

  • Notenboom, R.G., de Boer, P.A., Moorman, A.F., and Lamers, W.H., The Establishment of the Hepatic Architecture Is a Prerequisite for the Development of a Lobular Pattern of Gene Expression, Development, 1996, vol. 122, pp. 321–332.

    PubMed  CAS  Google Scholar 

  • Potter, V.P., Phenotypic Diversity in Experimental Hepatomas: The Concept of Partially Blocked Ontogeny, Br. J. Cancer, 1978, vol. 38, pp. 1–23.

    PubMed  CAS  Google Scholar 

  • Rabbitts, T.H., LMO T-Cell Translocation Oncogenes Typify Genes Activated by Chromosomal Translocations That Alter Transcription and Developmental Processes, Genes. Dev., 1998, vol. 12, pp. 2651–2657.

    PubMed  CAS  Google Scholar 

  • Radisky, D., Hagios, C., and Bissell, M., Tumors Are Unique Organs Defined by Abnormal Signaling and Contact, Semin. Cancer Biol., 2000, vol. 11, pp. 87–95.

    Article  Google Scholar 

  • Schmeichel, K.L. and Bissell, M.J., Modeling Tissue-Specific Signaling and Organ Function in Three Dimensions, J. Cell Sci., 2003, vol. 116, pp. 2377–2388.

    PubMed  Article  CAS  Google Scholar 

  • Stenman, U.H., Leinonen, J., Zhang, W.-M., and Finne, P., Prostate-Specific Antigen, Semin. Cancer Biol., 1999, vol. 9, pp. 83–92.

    PubMed  Article  CAS  Google Scholar 

  • Stetler-Stevenson, W. and Yu, A.E., Proteases in Invasion: Matrix Metalloproteinases, Semin. Cancer Biol., 2001, vol. 11, pp. 143–152.

    PubMed  Article  CAS  Google Scholar 

  • Tenen, D.G., Disruption of Differentiation in Human Cancer: AML Shows the Way, Int. Rev. Cancer, 2003, vol. 3, pp. 89–101.

    Article  CAS  Google Scholar 

  • Tenen, D.G., Hromas, R., Licht, J.D., and Zang, D.E., Transcription Factors, Normal Myeloid Development, and Leukemia, Blood, 1997, vol. 90, pp. 489–519.

    PubMed  CAS  Google Scholar 

  • Thiery, J.P., Epithelial-Mesenchymal Transitions in Tumour Progression, Nat. Rev. Cancer, 2002, vol. 2, pp. 442–454.

    PubMed  Article  CAS  Google Scholar 

  • Vanxxx Dongen, J.J.H., Szuepanski, T., and Adrianski, H.J., Immunology of Leukemia, Henderson, E., et al., Eds., Philadelphia: WB Sanders Co., 2002, pp. 85–129.

    Google Scholar 

  • Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al., Genetic Alterations during Colorectal-Tumor Development, N. Engl. J. Med., 1988, vol. 319, pp. 525–532.

    PubMed  CAS  Article  Google Scholar 

  • Wang, F., Weaver, V.M., Peterson, O.W., et al., Reciprocal Interactions between 1-Integrin and Epidermal Growth Factor Receptor in Three-Dimensional Basement Membrane Breast Cultures: A Different Perspective in Epithelial Biology, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 14821–14826.

    PubMed  Article  CAS  Google Scholar 

  • Weiler, E., On Carcinogenesis: Mechanism of Action, Ciba Found Symp. (old series), London, 1959, pp. 165–172.

  • Weinberg, R.A., Oncogenes, Antioncogenes, and the Molecular Bases of Multistep Carcinogenesis, Cancer Res., 1989, vol. 49, pp 3713–3721.

    PubMed  CAS  Google Scholar 

  • Wickremasinghe, R.G. and Hoffbrand, A.V., Biochemical and Genetic Control of Apoptosis: Relevance to Normal Hematopoiesis and Hematological Malignancies, Blood, 1999, vol. 93, pp. 3587–3600.

    PubMed  CAS  Google Scholar 

  • Zaret, K.S., Regulatory Phases of Early Liver Development: Paradigms of Organogenesis, Nat. Rev. Genet., 2002, vol. 3, pp. 499–512.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.I. Abelev, 2006, published in Ontogenez, 2006, Vol. 37, No. 3, pp. 227–233.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abelev, G.I. Differentiation antigens of hemoblastoses and epithelial tumors: Relations to the mechanisms of transformation and progression. Russ J Dev Biol 37, 187–192 (2006). https://doi.org/10.1134/S1062360406030076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360406030076

Key words

  • differentiation of hemoblastoses
  • differentiation of epithelial neoplasms
  • immunophenotyping of hemoblastoses
  • antigenic simplification of carcinomas
  • progression and differentiation of tumors
  • tumor markers
  • epithelial-mesenchymal transition
  • role of microenvironment in tumor progression