Skip to main content
Log in

Emission of Gaseous Nitrogen Oxides in Soils of Boreal Forests (Review)

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Denitrification losses of nitrogen-containing gases in the biome of boreal forests are discussed. In the soils of coniferous and deciduous forests of Western Europe, 0.57 ± 0.2 and 1.0 ± 0.2 kg N–N2O/ha/year are lost during denitrification. In North America this figure was 0.35 ± 0.29 kg N–N2O/ha/yr for all stands. The emission of N2O from forest soils correlated with the input of nitrogen from the atmosphere with r = 0.47 in coniferous forests and with r = 0.68 in deciduous plantations, returning to the atmosphere up to 30% of the nitrogen supplied with atmospheric precipitation. With a high input of nitrogen from the atmosphere, the emission of nitrogen-containing gases reached 20 kg N/ha/yr. Of these, NO, N2O, and N2 accounted for 21, 15, and 64%. Measurements of NO and especially N2 emissions remain very rare, leading to incomplete estimates of denitrification losses. Denitrification remains the most complex process in the nitrogen cycle, with no definitive methods for measuring it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Alm, J., Saarnio, S., and Nykanen, H., Winter CO2, CH4, and N2O fluxes on some natural and drained boreal peatlands, Biogeochemistry, 1999, vol. 44, pp. 163–186. https://doi.org/10.1023/A:1006074606204

    Article  Google Scholar 

  2. Ambus, P. and Zechmeister-Boltenstern, S., Denitrification and N-cycling in forest ecosystems, in Biology of the Nitrogen Cycle, 2007, pp. 343–358.

  3. Ananyeva, N.A., Ivashchenko, K.V., Stolnikova, E.V., Stepanov, A.L., and Kudeyarov, V.N., Specific features of determination of the net production of nitrous oxide by soils, Eurasian Soil Sci., 2015, vol. 48, no. 6, pp. 608–619. https://doi.org/10.1134/S1064229315060022

    Article  ADS  CAS  Google Scholar 

  4. Aurangojeb, M., Klemedtsson, L., Rütting, T., He, H., Weslien, P., and Banzhaf, S., Nitrous oxide emissions from Norway spruce forests on drained organic and mineral soil, Can. J. For. Res., 2017, vol. 47, pp. 1482–1487. https://doi.org/abs/10.1139/cjfr-2016-0541

    Article  CAS  Google Scholar 

  5. Barton, L., Mclay, C., Schipper, L., and Smith, C., Annual denitrification rates in agricultural and forest soils: a review, Aust. J. Soil Res., 1999, vol. 37, pp. 1079–1093.

    Google Scholar 

  6. Blagodatskii, S.A., Microbial biomass and soil nitrogen cycle modeling, Extended Abstract of Doctoral Dissertation, Pushchino, 2011.

  7. Borken, W. and Beese, F., Control of nitrous oxide emissions in European beech, Norway spruce and Scots pine forests, Biogeochemistry, 2005, vol. 76, pp. 141–159. https://doi.org/10.1007/s10533-005-2901-8

    Article  CAS  Google Scholar 

  8. Borken, W., Beese, F., Brumme, R., and Lamersdorf, N., Long-term reduction in nitrogen and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission from a German spruce forest soil, Soil Biol. Biochem., 2002, vol. 34, pp. 1815–1819.

    Article  CAS  Google Scholar 

  9. Bowden, R.D., Steudler, P.A., Mellilo, J.M., and Aber, J.D., Annual nitrous oxide fluxes from temperate forest soils in the north-eastern United States, J. Geophys. Res.: Atmos., 1990, vol. 95, pp. 13997–14005.

    Article  ADS  Google Scholar 

  10. Bowden, R.D., Steudler, P.A., Mellilo, J.M., and Aber, J.D., Effect of nitrogen additions on annual nitrous oxide fluxes from temperate forest soils in the northeastern United States, J. Geophys. Res.: Atmos. 1991, vol. 96, pp. 9321–9328.

    Article  ADS  CAS  Google Scholar 

  11. Bowden, R.D., Rullo, G., Stevens, G.R., and Steudler, P.A., Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest, J. Environ. Qual., 2000, vol. 29, pp. 268–276. https://doi.org/10.2134/jeq2000.00472425002900010034x

    Article  CAS  Google Scholar 

  12. Brumme, R., Borken, W., and Finke, S., Hierarchical control of nitrous oxide emissions in forest ecosystems, Global Biogeochem. Cycles, 1999, vol. 13, pp. 1137–1148. https://doi.org/10.1029/1999GB900017

    Article  ADS  CAS  Google Scholar 

  13. Butterbach-Bahl, K., Gasche, R., Breuer, L., and Papen, N., Fluxes of NO and N2O from temperate forest type, deposition and of liming on the NO and N2O emissions, Nutr. Cy-cl. Agroecosyst., 1997, vol. 48, pp. 79–90.

    Article  CAS  Google Scholar 

  14. Butterbach-Bahl, K., Willibald, G., and Papen, N., Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils, Plant Soil, 2002a, vol. 240, pp. 105–116. https://doi.org/10.1023/A:1015870518723

    Article  CAS  Google Scholar 

  15. Butterbach-Bahl, K., Gasche, R., Willibald, G., and Papen, N., Exchange of N-gases at the Hogwald Forest—a summary, Plant Soil, 2002b, vol. 240, pp. 117–123.

    Article  CAS  Google Scholar 

  16. Butterbach-Bahl, K., Baggs, E., Dannenmann, M., Kiese, R., and Zechmeister-Boltensterne, S., Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. Trans. R. Soc., B, 2013, vol. 368, p. 20130122. https://doi.org/10.1098/rstb.2013.0122

  17. Corre, M., Pennock, D.J., Kessel, C.V., and Elliot, D.K., Estimation of annual nitrous oxide emissions from transitional grassland-forest region in Saskatchevan, Canada, Biogeochemistry, 1999, vol. 44, pp. 29–49. https://doi.org/10.1023/A:1006025907180

    Article  Google Scholar 

  18. Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., Xia, F., et al., Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems, Global Change Biol., 2020, vol. 26, pp. 5267–5276. https://doi.org/10.1111/gcb.15211

    Article  ADS  Google Scholar 

  19. van Dijk, S. and Duyzer, J., Nitric oxide emissions from forest soils, J. Geophys. Res.: Atmos., 1999, vol. 104, pp. 1595–1596. https://doi.org/10.1029/1999JD900195

    Article  Google Scholar 

  20. Del Grosso S., Smith W., Kraus D., Massad R., Vogeler I., Fuchs K. Approaches and concepts of modelling denitrification: increased process understanding using observational data can reduce uncertainties, Curr. Opin. Environ. Sustain., 2020, vol. 47, pp. 37–45. https://doi.org/10.1016/j.cosust.2020.07.003

    Article  Google Scholar 

  21. Fedorova, R.I., Milekhina, E.I., and Ilyukhina, N.I., On the possibility of the gas exchange method for detecting life outside the Earth, Izv. Akad. Nauk SSSR, Ser. Biol., 1973, no. 6, pp. 797–806.

  22. Gineyts, R. and Niboyet, A., Nitrification, denitrification, and related functional genes under elevated CO2: a meta-analysis in terrestrial ecosystems, Global Change Biol., 2023, vol. 29, pp. 1839–1853. https://doi.org/10.1111/gcb.16568

    Article  CAS  Google Scholar 

  23. Goldberg, S.D., Borken, W., and Gebauer, G., N2O emission in a Norway spruce forest due to soil frost: concentration and isotope profiles shed a new light on an old story, Biogeochemistry, 2010, vol. 97, pp. 21–30. https://doi.org/10.1007/s10533-009-9294-z

    Article  CAS  Google Scholar 

  24. Goodroad, L.R. and Keeney, D., Nitrous oxide emission from forest, marsh, and prairie ecosystems, J. Environ. Qual., 1984, vol. 13, pp. 448–452.

    Article  CAS  Google Scholar 

  25. Grishakina, I.E., Features of microbial transformation of nitrogen in soils of the southern taiga (using the example of Central Forestry Forest), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2007.

  26. van Groenigen, J., Huygens, D., Boeckx, P., Kuyper, Th., Lubbers, I., Rutting, T., and Groffman, P., The soil N cycle: new insights and key challenges, Soil, 2015, vol. 1, pp. 235–256. https://doi.org/10.5194/soil-1-235-2015

    Article  ADS  Google Scholar 

  27. Groffman, P. and Tiedje, J., Denitrification in a north temperate forest soils: spatial and temporal patterns at the landscape and seasonal scales, Soil Biol. Biochem., 1989, vol. 21, pp. 613–620. https://doi.org/.org/10.1016/0038-0717(89)90053-9

    Article  Google Scholar 

  28. Groffman, P., Driskoll, C., Fachey, T., Hardy, J., Fitzhugh, R., and Tierney, J., Effect of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 2001, vol. 56, pp. 191–213. https://doi.org/10.1023/A:1013024603959

    Article  CAS  Google Scholar 

  29. Groffman, P., Altabet, M., Boëhlke, J., Butterbach-Bahl, K., David, M., Firestone, M., Giblin, A., Kana, T., Nielsen, L., and Voytek, M., Methods for measuring denitrification: diverse approaches to a difficult problem, Ecol. Appl., 2006a, vol. 16, no. 6, pp. 2091–2122. https://doi.org/10.1890/1051-0761(2006)

    Article  PubMed  Google Scholar 

  30. Groffman, P., Hardy, J., Driskoll, C., and Fachey, T., Snow depth, soil freezing, and fluxes of carbon dioxide nitrous oxide and methane in a northern hardwood forest, Global Change Biol., 2006b, vol. 12, pp. 1748–1760. https://doi.org/10.1111/j.1365-2486.2006.01194

    Article  ADS  Google Scholar 

  31. Groffman, P., Hardy, J., Fashn-Kann, S., Driskoll, C., Cleavitt, N., Fachey, T., and Fisk, M., Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape, Biogeochemistry, 2011, vol. 102, pp. 223–238. https://doi.org/10.1007/S10533-010-9436-3

    Article  Google Scholar 

  32. Gushon, G.H. and Feller, M.C., Asymbiotic nitrogen fixation and denitrificaftion in a mature forest in coastal British Columbia, Can. J. For. Res., 1989, vol. 19, pp. 1194–2000.

    Article  Google Scholar 

  33. Hentschel, K., Borken, W., and Matzner, E., Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil, J. Plant Nutr. Soil Sci., 2008, vol. 17, pp. 699–606. https://doi.org/10.1002/JPLN.200700154

    Article  Google Scholar 

  34. Jungkunst, H., Bargsten, A., Timme, M., and Glatzel, S., Spatial variability of nitrous oxide emissions in unmanaged old-growth beech forest, J. Plant Nutr. Soil Sci., 2012, vol. 175, pp. 739–749. https://doi.org/10.1002/jpln.201100412

    Article  CAS  Google Scholar 

  35. Kellman, L. and Kavanaugh, K., Nitrous oxide dynamics in managed northern forest soil profiles: is production offset by consumption?, Biogeochemistry, 2008, vol. 90, pp. 115–128. https://doi.org/10.1007/s10533.008.9237.0

  36. Kitzler, B., Zechmeister-Boltcnstem, S., Holtermann, C., Skiba, U., and Butterbach-Bahl, K., Nitrous oxide emission from two beech forests subjected to different nitrogen loads, Biogeosciences, 2006, vol. 3, pp. 293–310. https://doi.org/10.5194/bg-3-293-2006

    Article  ADS  CAS  Google Scholar 

  37. Klemedson, L., Klemedson, K.A., Maidan, F., and Weslien, P., Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N~deposition, Biol. Fertil. Soils, 1997, vol. 25, pp. 290–295. https://doi.org/10.1007/s003740050317

    Article  Google Scholar 

  38. Klimova, A.Yu., Stepanov, A.L., and Manucharova, N.A., Specific features of nitrogen and carbon transformation in an oligotrophic peat soil, Eurasian Soil Sci., 2019, vol. 52, no. 10, pp. 1223–1226. https://doi.org/10.1134/S1064229319100041

    Article  ADS  CAS  Google Scholar 

  39. Komarova, T.V., Vasenev, I.I., and Povetkin, V.A., Ecological assessment of soil fluxes of greenhouse gases in fallow overgrowth successions of the Central Forest Reserve, in Materialy V konferentsii LAMP (Laboratoriya agroekologicheskogo monitoringa, modelirovaniya i prognozirovaniya ekosistem RGAU-MSKhA imeni K.A. Timiryazeva) (Proc. V LAMP Conf. (Laboratory of Agroecological Monitoring, Modeling and Forecasting of Ecosystems, Timiryaev Moscow Agricultural Academy)), Vasenev, I.I., Ed., Moscow: OOO Tipografiya Print Formula, 2015, pp. 90–96.

  40. Kromka, M., Stepanov, A.L., and Umarov, M.M., Reduction of nitrous oxide by microbial biomass in soils, Pochvovedenie, 1991, no. 8, pp. 121–126.

  41. Kudeyarov, V.N., Nitrous oxide emission from fertilized soils: an analytical review, Eurasian Soil Sci., 2020, vol. 53, no. 10, pp. 1396–1407. https://doi.org/10.1134/S1064229320100105

    Article  ADS  CAS  Google Scholar 

  42. Kurganova, I.N., Teepe, R., and Lopes de Gerenyu, V.O., The dynamics of N2O emission from arable and forest soils under alternating freeze–thaw conditions, Eurasian Soil Sci., 2004, vol. 37, no. 11, pp. 1219–1228.

    Google Scholar 

  43. Li, Z., Tang, Z., Song, Z., Chen, W., Tian, D., Tang, S., et al., Variations and controlling factors of soil denitrification rate, Global Change Biol., 2022, vol. 28, pp. 2133–2145. https://doi.org/10.1111/gcb.16066

    Article  CAS  Google Scholar 

  44. Llado, S., Lypez-Mondejar, R., and Baldrian, P., Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change, Microbiol. Mol. Biol. Rev., 2017, vol. 81, no. 2, p. e00063-16. https://doi.org/10.1128/MMBR.00063-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lubbers, I., Berg, M., De Deyn, G., van der Putten, W., and van Groenigen, J.W., Soil fauna diversity increases CO2 but suppresses N2O emissions from soil, Global Change Biol., 2020, vol. 26, pp. 1886–1898. https://doi.org/10.1111/gcb.14860

    Article  ADS  Google Scholar 

  46. Luo, G., Bruggemann, N., Gasche, W., Grote, R., and Butterbach-Bahl, K., Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Hoglwald Forest, Germany, Biogeosciences, 2012, vol. 9, pp. 1741–1763. https://doi.org/10.5194/bg-9-1741-2012

    Article  ADS  CAS  Google Scholar 

  47. Maljnen, M., Hytonen, J., and Martikainen, P.J., Cold-season nitrous oxide dynamics in a drained boreal peatland differ depending on land-use practice, Can. J. For. Res., 2010, vol. 40, pp. 565–572. https://doi.org/10.1139/X10-004

    Article  CAS  Google Scholar 

  48. Mamai, A., Fedorets, N., and Stepanov, A., Processes of nitrogen fixation and denitrification in podzolic soils of coniferous and small-leaved forests of the middle taiga subzone of Karelia, Lesovedenie, 2013, no. 1, pp. 66–74.

  49. Matson, A., Pennock, D., and Bedard-Hau, A., Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada, For. Ecol. Manage., 2009, vol. 258, pp. 1073–1083. https://doi.org/10.1016/j.foreco.2009.05.034

    Article  Google Scholar 

  50. Menyailo, O.V., Matvienko, A.I., Makarov, M.I., and Cheng, Sh.-K., The role of nitrogen in the regulation of the carbon cycle in forest ecosystems, Lesovedenie, 2018, no. 2, pp. 143–159. https://doi.org/10.7868/S0024114818020067

  51. Merril, A. and Zak, D., Factors controlling denitrification rates in upland and swamp forest, Can. J. For. Res., 1992, vol. 22, pp. 1597–1604.

    Article  Google Scholar 

  52. Mogge, B., Kaiser, E.-A., and Munch, J.-C., Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhoved Lake region: influence of organic fertilizers and land-use, Soil Biol. Biochem., 1999, vol. 31, pp. 1245–1252. https://doi.org/10.1016/S0038-0717(99)00039-5

    Article  CAS  Google Scholar 

  53. Mogge, B., Nitrous oxide emissions and denitrification N‑losses from forest soils in the Bornhoved Lake region (Northern Germany), Soil Biol. Biochem., 1998, vol. 30, pp. 703–710. https://doi.org/.org/10.1016/S0038-0717(97)00205-8

    Article  CAS  Google Scholar 

  54. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S., Greenhouse gas emissions from soils—a review, Chem. Erde, 2016, vol. 76, pp. 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

    Article  CAS  Google Scholar 

  55. Ojanen, P., Minkkinen, K., Alm, J., and Pentilla, T., Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drainage peatland, For. Ecol. Manage., 2010, vol. 260, pp. 411–421. https://doi.org/10.1016/j.foreco.2010.04.036

    Article  Google Scholar 

  56. Oremland, R.S. and Capone, D.G., Use of “specific” inhibitors in biogeochemistry and microbial ecology, Adv. Microb. Ecol., 1988, vol. 10, pp. 285–383.

    Article  CAS  Google Scholar 

  57. Peichl, M., Arain, M.A., Ullan, S., and Moore, T.R., Carbon dioxide, methane and nitrous oxide exchanges in an age-sequence of temperate pine forests, Global Change Bio-l., 2010, vol. 16, pp. 2198–2212. https://doi.org/10.1111/j.1365-2486.2009.02066.x

    Article  ADS  Google Scholar 

  58. Peterjohn, W.T., McGervey, R.J., Sexstone, A.J., Christ, M.J., Foster, C.J., and Adams, M.B., Nitrous oxide production in two forested watersheds exhibiting symptoms of nitrogen saturation, Can. J. For. Res., 1998, vol. 28, pp. 1723–1732. https://doi.org/10.1139/cjfr-28-11-1723

    Article  CAS  Google Scholar 

  59. Pilegaard, C., Skiba, U., Ambus, P., Beier, C., Brtiggemann, N., Butterbach-Bahl, K., et al., Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O), Biogeosciences, 2006, vol. 3, pp. 651–661. https://doi.org/.org/10.5194/bg-3-651-2006

    Article  ADS  CAS  Google Scholar 

  60. Raivonen, M., Bonn, B., Sanz, M., Vesala, T., Kulmala, M., and Hari, P., UV-induced NOx emissions from Scots pine: could they originate from photolysis of deposited HNO3?, Atmos. Environ., 2006, vol. 40, pp. 6201–6213. https://doi.org/10.14214/df.71

    Article  ADS  CAS  Google Scholar 

  61. Razgulin, S.M., Tsikl azota v ekosistemakh yuzhnoi taygi Evropeiskoi Rossii (The Nitrogen Cycle in the Ecosystems of the Southern Taiga of European Russia), Moscow: KMK, 2022.

  62. Regina, R., Mykanen, H., Maijanen, M., Silvola, J., and Martikainen, P.J., Emissions of N2O and NO and net nitrogen mineralization in a boreal forested peatland treated with different nitrogen compounds, Can. J. For. Res., 1998, vol. 28, pp. 132–140. https://doi.org/.org/10.1139/x97-198

    Article  CAS  Google Scholar 

  63. Reimers, N.F., Prirodopol’zovanie (Nature Management), Moscow: Mysl’, 1990.

    Google Scholar 

  64. Saari, P., Saarnio, S., Kukkonen, J., Akkanen, J., Heinonen, J., Saari, V., and Alm, J., DOC and N2O dynamics In upland and peatland forest soils after clear-cutting, and soil preparation, Biogeochemistry, 2009, vol. 94, pp. 217–231. https://doi.org/10.1007/s10533.009.9320.1

    Article  CAS  Google Scholar 

  65. Schmidt, J., Conrad, R., and Seiler, W., Emission of nitrous oxide from temperate forest soils into the atmosphere, J. Atmos. Chem., 1988, vol. 6, pp. 95–115. https://doi.org/10.1007/BF00048334

    Article  CAS  Google Scholar 

  66. Schmitt, A., Glaser, W., Borken, W., and Matzner, E., Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil, J. Plant Nutr. Soil Sci., 2008, vol. 17, pp. 707–718. https://doi.org/10.1002/jpln.200700334

    Article  CAS  Google Scholar 

  67. Schulte-Bisping, H. and Beese, F., N-fluxes and N-turnover in a mixed beech–pine forest under low N-inputs, Eur. J. For. Res., 2016, vol. 135, pp. 229–241. https://doi.org/10.1007/s10342-015-0931-x

    Article  CAS  Google Scholar 

  68. Schulte-Bisping, H., Brumme, R., and Priesack, E., Nitrous oxide emission inventory of German forest soils, J. Geophys. Res.: Atmos., 2003, vol. 108, pp. 41–32. https://doi.org/10.1029/2002JD002292

    Article  CAS  Google Scholar 

  69. Teepe, R., Brumme, R., and Beese, E., Nitrous oxide emissions from frozen soils under agricultural, fallou and forest land, Soil Biol. Biochem., 2000, vol. 32, pp. 1807–1810. https://doi.org/10.1016/S0038-0717(00)00078-X

    Article  CAS  Google Scholar 

  70. Teepe, R., Beese, R., and Ludwig, B., Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing, Soil Sci., 2004, vol. 55, pp. 357–362. https://doi.org/10.1111/j.1365-2389.2004.00602.x

    Article  CAS  Google Scholar 

  71. Tian, H., Yang, J., Xu, R., Lu, C., Canadell, J., Davidson, E., et al., Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty, Global Change Biol., 2019, vol. 25, pp. 640–659. https://doi.org/10.1111/gcb.14514

    Article  ADS  Google Scholar 

  72. Tietema, A., Bouten, W., and Wartenberg, P.E., Nitrous oxide dynamics in an oak-beech forest ecosystem in the Netherlands, For. Ecol. Manage., 1991, vol. 44, pp. 53–61.

    Article  Google Scholar 

  73. Ullah, S. and Zinati, G., Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff, Biogeochemistry, 2006, vol. 81, pp. 253–267. https://doi.org/10.1007/s10533-006-9040-8

  74. Umarov, M.M., Kurakov, A.V., and Stepanov, A.L., Mikrobiologicheskaya transformatsiya azota v pochve (Microbiological Transformation of Nitrogen in the Soil), Moscow: Geos, 2007.

  75. Venterea, R., Groffman, P., Castro, M., Verchot, L., et al., Soil emissions of nitric oxide in two forest watersheds subjected to elevated N inputs, For. Ecol. Manage., 2004, vol. 196, pp. 335–349. https://doi.org/10.1016/S0378-1127(04)00238-5

    Article  Google Scholar 

  76. Vermes, J. and Myrold, D., Denitrification in forest soils of Oregon, Can. J. For. Res., 1992, vol. 22, pp. 504–512.

    Article  CAS  Google Scholar 

  77. Wolf, I. and Brumme, R., Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils, Soil Sci. Soc. Am. J., 2003, vol. 67, pp. 1862–1868. https://doi.org/10.2136/sssaj2003.1862

  78. Wu, Y.-F., Whitaker, J., Toet, S., Bradley, A., Davies, C., and McNamara, N., Diurnal variability in soil nitrous oxide emissions is a widespread phenomenon, Global Change Biol., 2021, vol. 27, pp. 4950–4966. https://doi.org/10.1111/gcb.15791

    Article  CAS  Google Scholar 

  79. Xu, H., Yu, M., and Cheng, X., Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations, Ecol. Indic., 2021, vol. 129, p. 107932. https://doi.org/10.1016/j.ecolind.2021.107932

    Article  CAS  Google Scholar 

  80. Zhang, H., Tang, C., Berninger, F., Bai, S., Wang, H., and Wang, Y., Intensive forest harvest increases N2O emission from soil: a meta-analysis, Soil Biol. Biochem., 2022, vol. 172, p. 108712. https://doi.org/10.1016/j.soilbio.2022.108712

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Razgulin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razgulin, S.M. Emission of Gaseous Nitrogen Oxides in Soils of Boreal Forests (Review). Biol Bull Russ Acad Sci 51, 200–210 (2024). https://doi.org/10.1134/S1062359023603981

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023603981

Keywords:

Navigation