Skip to main content
Log in

Comparison of the Cytogenetic Effects of a Pulsed Magnetic Field and Gamma Radiation on Meristem Cells of Onion Seed Sprouts (Allium cepa L.)

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of a pulsed magnetic field (PMF) on meristem cells of onion seedlings was compared with the effects of acute gamma irradiation using the allium test. It was found that a PMF with a carrier frequency of 1.8 MHz, a pulse repetition rate of 28 kHz, and a magnetic field induction of 75 mT per pulse leads to an increase in the mitotic index, mainly due to an increase in the proportion of cells in the prophase and an increase in the frequency of cells with chromosome aberrations in the ana-telophase and does not affect the frequency of cells with micronuclei. It has been suggested that a PMF causes nonspecific oxidative stress in plant cells, accompanied by a delay in the cell cycle at the check point (G2/M) and induction of DNA damage. According to these indicators, the PMF resembles the effect of ionizing radiation in doses of 0.05–0.5 Gy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Barberio, A., Voltolini, J.C., and Mello, M.L.S., Standardization of bulb and root sample sizes for the Allium cepa test, Ecotoxicology, 2011, vol. 20, pp. 927–935. https://doi.org/10.1007/s10646-011-0602-8

    Article  CAS  PubMed  Google Scholar 

  2. Belyavskaya, N.A., Biological effects due to weak magnetic field on plants, Adv. Space Res., 2004, vol. 34, no. 7, pp. 1566–1574. https://doi.org/10.1016/j.asr.2004.01.021

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bogolyubov, V.M. and Skurikhina, L.A., Biological effect of constant and alternating low-frequency magnetic fields, Vopr. Kurortol., Fizioter. LFK, 1978, no. 6, pp. 64–72.

  4. Bolsunovsky, A.Ya., Dementyev, D.V., Trofimova, E.A., Iniatkina, E.M., Kladko, Yu.V., and Petrichenkov, M.V., Cytogenetic effects of γ-radiation in onion (Allium cepa L.) seedlings, Dokl. Biochem. Biophys., 2018, vol. 481, pp. 181–185. https://doi.org/10.1134/S1607672918040014

    Article  CAS  PubMed  Google Scholar 

  5. Donà, M., Ventura, L., Macovei, A., Confalonieri, M., Savio, M., Giovannin, A., Carbonera, D., and Balestrazzi, A., Gamma irradiation with different dose rates induces different DNA damage responses in Petunia x hybrida cells, J. Plant Physiol., 2013, vol. 170, pp. 780–787. https://doi.org/10.1016/j.jplph.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  6. Evseeva, T.I., Geras’kin, S.A., Shuktomova, I.I., and Taskaev, A.I., Genotoxicity and cytotoxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia), J. Environ. Radioact., 2005, vol. 80, pp. 59–74. https://doi.org/10.1016/j.jenvrad.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  7. Fenech, M. and Morley, A., Measurement of micronuclei in lymphocytes, Mutat. Res., 1985, no. 147, pp. 29–36. https://doi.org/10.1016/0165-1161(85)90015-9

  8. Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, L.H., Eastmond, D.A., Tucker, J.D., and Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125–132. https://doi.org/10.1093/mutage/geq052

    Article  CAS  PubMed  Google Scholar 

  9. Fiskesjo, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, pp. 99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

    Article  CAS  PubMed  Google Scholar 

  10. Galuzo, S.Yu. and Kozlov, V.I., Impul’snoe magnitnoe pole: Laboratornyi praktikum po obshchei fizike (elektrichestvo i magnetizm) (Pulsed magnetic field: Laboratory workshop in general physics (electricity and magnetism)), Moscow: Mosk. Gos. Univ., 2006.

  11. Geras’kin, S.A., Oudalova, A.A., Kim, J.K., Dikarev, V.G., and Dikareva, N.S., Cytogenetic effect of low dose c-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship, Radiat. Environ. Biophys., 2007, vol. 46, no. 1, pp. 31–41. https://doi.org/10.1007/s00411-006-0082-z

    Article  PubMed  Google Scholar 

  12. Goodman, E.M., Sharpe, P.T., Greenebaum, B., and Marron, M.T., Pulsed magnetic fields alter the cell surface, FEBS Lett., 1986, vol. 199, no. 2, pp. 275–278. https://doi.org/10.1016/0014-5793(86)80494-x

    Article  CAS  PubMed  Google Scholar 

  13. Grant, W.F., Chromosome aberration assays in Allium. A report of the US environmental protection agency Gene-Tox program, Mutation Res., 1982, vol. 99, pp. 273–291. https://doi.org/10.1016/0165-1110(82)90046-X

    Article  CAS  PubMed  Google Scholar 

  14. Il’inskikh, N.N., Novitskii, V.V., Vanchugova, N.N., and Il’inskikh, I.N., Mikroyadernyi analiz i tsitogeneticheskaya nestabil’nost’ (Micronucleus Analysis and Cytogenetic Instability), Tomsk: Tomsk. Univ., 1992.

  15. Kalaev, V.N., Butorina, A.K., Panov, A.V., and Levin, M.N., The influence of the electric field on the cytogenetic parameters of the cells of the apical meristem of the seedlings of pedunculate oak (Quercus robur L.), Vestn. VGU, Ser. K-him. Biol. Farm., 2003, no. 2, pp. 136–141.

  16. Kisurina-Evgen’eva, O.P., Sutyagina, O.I., and Onishchenko, G.E., Biogenesis of micronuclei, Biokhimiya, 2016, vol. 81, no. 5, pp. 612–624.

    Google Scholar 

  17. Kumar, A., Kaur, S., Chandel, S., Singh, H.P., Batish, D.R., and Kohli, R.K., Comparative cyto- and genotoxicity of 900 and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa, Ecotoxicol. Environ. Saf., 2020, vol. 188. https://doi.org/10.1016/j.ecoenv.2019.109786

  18. Kuzovlev, A.N., Yadgarov, M.Ya., Berikashvili, L.B., Ryabova, E.V., Goncharova, D.D., Perekhodov, S.N., and Likhvantsev, V.V., Choosing a statistical analysis method, Anesteziol. Reanimatol., 2021, no. 3, pp. 88–93. https://doi.org/10.17116/anaesthesiology202103188

  19. Livshiz, Y. and Gafri, O., Technology and equipment for industrial use of pulse magnetic fields, Digest of Technical Papers. 12th IEEE Int. Pulsed Power Conf., Cat. no. 99CH36358, 1999, vol. 1, pp. 475–478.

  20. Loeschinger, M., Thumm, S., Haemmerle, H., and Rodemann, H.P., Stimulation of protein kinase a activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields, Toxicol. Lett., 1998, vols. 96–97, pp. 369–376. https://doi.org/10.1016/s0378-4274(98)00095-2

    Article  Google Scholar 

  21. López-Díaz, B., Mercado-Sáenz, S., Martínez-Morillo, M., Sendra-Portero, F., and Ruiz-Gómez, M.J., Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation, Electromagnet. Biol. Med., 2014, vol. 33, no. 3, pp. 228–235. https://doi.org/10.3109/15368378.2013.802245

    Article  CAS  Google Scholar 

  22. Narkevich, A.N., Vinogradov, K.A., and Grzhibovskii, A.M., Multiple comparisons in biomedical research: problems and solutions, Ekol. Chel., 2020, no. 10, pp. 55–64. https://doi.org/10.33396/1728-0869-2020-10-55-64

  23. Olive, P.L., The role of DNA single- and double-strand breaks in cell killing by ionizing radiation, Radiat. Res. Soc., 1998, vol. 150, no. 5, suppl.: Madame Curie’s Discovery of Radium (1898): A Commemoration by Women in Radiation Sciences, 1998, pp. 42–51.

  24. Oudalova, A.A., Geras’kin, S.A., Dikarev, V.G., Nesterov, Y.B., and Dikareva, N.S., Induction of chromosome aberrations is non-linear within the low dose region and depends on dose rate, Radiat. Protect. Dosim., 2002, vol. 99, pp. 245–248. https://doi.org/10.1093/oxfordjournals.rpd.a006774

    Article  CAS  Google Scholar 

  25. Panagopoulos, D.J., Karabarbounis, A., Yakymenko, I., and Chrousos, G.P., Human made electromagnetic fields: ion forced oscillation and voltage gated ion channel dysfunction, oxidative stress and DNA damage (review), Int. J. Oncol., 2021, vol. 59, no. 5. https://doi.org/10.3892/ijo.2021.5272

  26. Panda, B.B. and Sahu, U.K., Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfotion, Cytobiosis, 1985, vol. 42, pp. 147–155.

    CAS  Google Scholar 

  27. Pausheva, Z.P., Praktikum po tsitologii rastenii (Workshop on Plant Cytology), Moscow: Agropromizdat, 1988, 4th ed. (suppl., rev.).

  28. Priakhin, E.A., Urutskoev, L.I., Stiazhkina, E.V., Tryapitsyna, G.A., Aldibekova, A.E., Peretykin, A.A., Priakhin, E.E., Alabin, K.A., Pilia, N.D., Chikovani, N.Z., Voitenko, D.A., and Arshba, R.M., Biological detection of physical factors related to the high-current electric explosion of conductors in a vacuum, Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 11, pp. 1341–1348. https://doi.org/10.3103/S1062873820110222

    Article  CAS  Google Scholar 

  29. Prokhorova, I.M., Kovaleva, M.I., and Fomicheva, A.M., Otsenka mitotoksicheskogo i mutagennogo deistviya faktorov okruzhayushchei sredy: metod. ukazaniya (Assessment of Mitotoxic and Mutagenic Effects of Environmental Factors: Guidelines), Yaroslavl: Yarosl. Gos. Univ., 2003.

  30. Prokhorova, I.M., Kovaleva, M.I., and Fomicheva, A.N., Geneticheskaya toksikologiya: laboratornyi praktikum (Genetic Toxicology: Laboratory Workshop), Yaroslavl: Yarosl. Gos. Univ., 2005.

  31. Rank, J., The method of Allium anaphase-telophase chromosome aberration assay, Ekologija (Vilnius), 2003, vol. 1, pp. 38–42.

    Google Scholar 

  32. Reddy, S.B., Weller, J., Desjardins-Holmes, D., Winters, T., Keenliside, L., Prato, F.S., Prihoda, T.J., Thomas, V., and Thomas, A.W., Micronuclei in the blood and bone marrow cells of mice exposed to specific complex time-varying pulsed magnetic fields, Bioelectromagnetics, 2010, vol. 31, no. 6, pp. 445–453. https://doi.org/10.1002/bem.20576

    Article  PubMed  Google Scholar 

  33. Sarraf, M., Kataria, S., Taimourya, H., Oliveira, SantosL., Menegatti, R.D., Jain, M., Ihtisham, M., and Liu, S., Magnetic field (MF) applications in plants: an overview, Plants, 2020, vol. 9, p. 1139. https://doi.org/10.3390/plants9091139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaburova, N., Krymsky, V., and Moghaddam, A.O., Theory and practice of using pulsed electromagnetic processing of metal melts, Materials, 2022, vol. 15. https://doi.org/10.3390/ma15031235

  35. Singh, N.P. and Lai, H., 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells, Mutat. Res., 1998, vol. 400, nos. 1–2, pp. 313–320. https://doi.org/10.1016/s0027-5107(98)00017-7

    Article  CAS  PubMed  Google Scholar 

  36. Sinovets, S.Yu., Pyatkova, S.V., and Koz’min, G.V., Experimental justification for the use of allium test in radioecological monitoring, Izv. Vuzov, 2009, no. 1, pp. 32–38. https://doi.org/10.3390/ijms21041534

  37. Sommer, S., Buraczewska, I., and Kruszewski, M., Micronucleus assay: the state of art, and future directions, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1534. https://doi.org/10.3390/ijms21041534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Terradas, M., Martin, M., Tusell, L., and Genesca, A., Dna lesions sequestered in micronuclei induce a local defective damage response, DNA Repair, 2009, no. 8, pp. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004

  39. Tkalec, M., Malarić, K., Pavlica, M., Pevalek-Kozlina, B., and Vidaković-Cifrek, Z., Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L., Mutat. Res., 2009, vol. 672, no. 2, pp. 76–81. https://doi.org/10.1016/j.mrgentox.2008.09.022

    Article  CAS  PubMed  Google Scholar 

  40. Tskhovrebova, L.V., Agadzhanyan, A.V., and Makedonov, G.P., The effect of a radioadaptive response after exposure to X‑rays and gamma quanta on peripheral blood lymphocytes of healthy donors, Auditorium. Elektron. Nauchn. Zh. Kursk. Gos. Univ., 2017, no. 2 (14).

  41. Udalova, A.A., Pyatkova, S.V., Geras’kin, S.A., Kiselev, S.M., and Akhromeev, S.V., Assessment of cyto- and genotoxicity of groundwater collected at the industrial site of the Far Eastern Center for Radioactive Waste Management, Radiats. Biol. Radioekol., 2016, vol. 56, no. 2, pp. 208–219. https://doi.org/10.7868/S0869803116020132

    Article  Google Scholar 

  42. Wahab, M.A., Podd, J.V., Rapley, B.I., and Rowland, R.E., Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields, Bioelectromagnetics, 2007, vol. 28, no. 4, pp. 281–288. https://doi.org/10.1002/bem.20289

    Article  CAS  PubMed  Google Scholar 

  43. Yalçın, S. and Erdem, G., Biological effects of electromagnetic fields, Afr. J. Biotechnol., 2012, vol. 11, no. 17, pp. 3933–3941. https://doi.org/10.5897/AJB11.3308

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-52-40003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Aldibekova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldibekova, A.E., Styazhkina, E.V., Tryapitsyna, G.A. et al. Comparison of the Cytogenetic Effects of a Pulsed Magnetic Field and Gamma Radiation on Meristem Cells of Onion Seed Sprouts (Allium cepa L.). Biol Bull Russ Acad Sci 51, 1–10 (2024). https://doi.org/10.1134/S106235902360304X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902360304X

Keywords:

Navigation