Skip to main content
Log in

Lipid-Correcting and Antioxidant Effects of the Lipid Complex from the Red Marine Algae Ahnfeltia tobuchiensis under the Conditions of a High-Fat Diet

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The influence of the lipid complex isolated from the thallus of the red marine algae Ahnfeltia tobuchiensis (LCA) on the metabolic parameters of the blood and liver of rats under a high-fat diet was studied. It was shown that the administration of LCA had a pronounced lipid-correcting and antioxidant effect, which was superior to that of the “Omega 3-6-9” reference preparation in terms of its ability to restore lipid metabolism, the ratio of lipoprotein fractions, and the indices of the endogenous antioxidant protection system; in addition it prevented the development of hepatosis. The lipid-correcting and antioxidant effect of LCA is specified by the action of n-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, which are part of the structure of phospholipids and glycolipids of marine origin and make up the main part of the studied lipid complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Amenta, J.S., A rapid chemical method for quantification of lipids separated by thin-layer chromatography, Lipid Res., 1964, vol. 5, pp. 270–272. https://doi.org/10.1016/S0022-2275(20)40251-2

    Article  CAS  Google Scholar 

  2. Balk, E.M., Lichtenstein, A.H., Chung, M., Kupelnick, B., Chew, P., and Lau, J., Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review, Atherosclerosis, 2006, vol. 189, no. 1, pp. 19–30. https://doi.org/10.1016/j.atherosclerosis.2006.02.012

    Article  CAS  PubMed  Google Scholar 

  3. Bartosz, G., Janaszewska, A., Ertel, D., and Bartosz, M., Simple determination of peroxyl radical-trapping capacity, Biochem. Mol. Biol. Int., 1998, vol. 46, no. 3, pp. 519–528. https://doi.org/10.1080/15216549800204042

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, A.M., Ding, E.L., Willett, W.C., and Rimm, E.B., A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease, J. Nutr., 2012, vol. 142, no. 1, pp. 99–104. https://doi.org/10.3945/jn.111.148973

    Article  CAS  PubMed  Google Scholar 

  5. Bligh, E.G. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can. J. Phys., 1959, vol. 37, no. 8, pp. 911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  6. Bodur, A., Ince, I., Kahraman, C., Abidin, I., Aydin-Abidin, S., and Alver, A., Effect of a high sucrose and high fat diet in bdnf (+/-) mice on oxidative stress markers in adipose tissues, Arch. Biochem. Biophys., 2019, vol. 665, pp. 46–56. https://doi.org/10.1016/j.abb.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  7. Bradford, M.M., Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  8. Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, Methods Enzymol., 1978, vol. 52, pp. 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  9. Burillo, E., Martin-Fuentes, P., Mateo-Gallego, R., Baila-Rueda, L., Cenarro, A., Ros, E., and Civeira, F., Omega-3 fatty acids and HDL. How do they work in the prevention of cardiovascular disease?, Curr. Mol. Pharmacol., 2012, vol. 10, pp. 432–441. https://doi.org/10.2174/157016112800812845

  10. Burk, R.F., Lawrence, R.A., and Lane, J.M., Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration: effect of selenium deficiency, J. Clin. Invest., 1980, vol. 65, no. 5, pp. 1024–1031. https://doi.org/10.1172/JCI109754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, J., Jiang, Y., Ma, K.Y., Chen, F., and Chen, Z.Y., Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase J. Agric. Food Chem., 2011, vol. 59, no. 12, pp. 6790–6797. https://doi.org/10.1021/jf200757h

    Article  CAS  PubMed  Google Scholar 

  12. Connor, W.E. and Connor, S.L., Dietary treatment of familial hypercholesterolemia, Arteriosclerosis, 1989, vol. 9, no. 1 (suppl.), pp. I91–105.

    CAS  PubMed  Google Scholar 

  13. Dyadyk, A.I., Kugler, T.E., Suliman, Yu.V., Zborovskii, S.R., and Zdikhovskaya, I.I., Side effects of statins: mechanisms of development, diagnosis, prevention and treatment, Arkh. Vnutr. Med., 2018, vol. 8, no. 4, pp. 266–276. https://doi.org/10.20514/22266704-2018-8-4-266-276

    Article  Google Scholar 

  14. Fisenko, V.P., Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv (Guidelines for Experimental (Preclinical) Study of New Pharmacological Substances), Moscow: Remedium, 2000.

  15. Folch, J., Less, M., and Sloane-Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  16. Fomenko, S.E., Kushnerova, N.F., Sprygin, V.G., Drugova, E.S., Lesnikova, L.N., Merzlyakov, V.Yu., and Momot, T.V., Lipid composition, content of polyphenols, and antiradical activity in some representatives of marine algae, Russ. J. Plant Physiol., 2019, vol. 366, no. 6, pp. 942–949. https://doi.org/10.1134/S1021443719050054

    Article  Google Scholar 

  17. Francisqueti, F., Chiaverini, L., Carolo, Dos., Santos, K., Minatel, I.O., Ronchi, C., Ferron, A., Ferreira, A., and Correa, C., The role of oxidative stress on the pathophysiology of metabolic syndrome, Rev. Assoc. Med. Bras., 2017, vol. 63, pp. 85–91. https://doi.org/10.1590/1806-9282.63.01.85

    Article  PubMed  Google Scholar 

  18. Garrel, C., Alessandri, J.-M., Guesnet, P., and Al-Gubory, K.H., Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development, Int. J. Biochem. Cell Biol., 2012, vol. 44, no. 1, pp. 123–131. https://doi.org/10.1016/j.biocel.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Ghezelbash, B., Shahrokhi, N., Khaksari, M., Ghaderi-Pakdel, F., and Asadikaram, G., Hepatoprotective effects of Shilajit on high fat-diet induced non-alcoholic fatty liver disease (NAFLD) in rats, Horm. Mol. Biol. Clin. Invest., 2020, vol. 41, no. 1, p. 20190040. https://doi.org/10.1515/hmbci-2019-0040

    Article  CAS  Google Scholar 

  20. Goldberg, D.M. and Spooner, R.J., Assay of glutathione reductase, Methods Enzym. Anal., Deerfiled Beach: Verlog Chemie, 1983, vol. 3, pp. 258–265.

    CAS  Google Scholar 

  21. Hirotani, Y., Ozaki, N., Tsuji, Y., Urashima, Y., and Myotoku, M., Effects of eicosapentaenoic acid on hepatic dyslipidemia and oxidative stress in high fat diet-induced steatosis, Int. J. Food. Sci. Nutr., 2015, vol. 66, no. 5, pp. 569–573. https://doi.org/10.3109/09637486.2015.1042848

    Article  CAS  PubMed  Google Scholar 

  22. Jimoh, A., Tanko, Y., Ahmed, A., Mohammed, A., and Ayo, J.O., Resveratrol prevents high-fat diet-induced obesity and oxidative stress in rabbits, Pathophysiology, 2018, vol. 25, no. 4, pp. 359–364. https://doi.org/10.1016/j.pathophys.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, M. and Bradford, C., Omega-3, omega-6 and omega-9 fatty acids: implications for cardiovascular and other diseases, J. Glycomics Lipidomics, 2014, vol. 4, p. 2153-0637.1000123. https://doi.org/10.4172/2153-0637.1000123

  24. Karpishchenko, A.I., Meditsinskie laboratornye tekhnologii: rukovodstvo po klinicheskoi laboratornoi diagnostike v 2-kh tomakh (Medical Laboratory Technologies: Manual of Clinical Laboratory Diagnostics, in 2 vols.), Alekseev, V.V., Alipov, A.N., Andreev, V.A., et al., Eds., Moscow: OOO GEOTAR-Media, 2013, 3rd ed. (suppl., rev.), vol. 2.

  25. Khotimchenko, S.V. and Gusarova, I.S., Red algae of Peter the Great Bay as a source of arachidonic and eicosapentanoic acids, Biol. Morya, 2004, vol. 30, no. 3, pp. 215–218. https://doi.org/10.1023/B:RUMB.0000033953.67105.6b

    Article  Google Scholar 

  26. Komprda, T., Škultéty, O., Křižková, S., Zorníková, G., Roziková, V., and Krobot, R., Effect of dietary Schizochytrium microalga oil and fish oil on plasma cholesterol level in rats, J. Anim. Physiol. Anim. Nutr. (Berl.), 2015, vol. 99, no. 2, pp. 308–316. https://doi.org/10.1111/jpn.12221

    Article  CAS  PubMed  Google Scholar 

  27. Krivoshapko, O.N., Popov, A.M., Artyukov, A.A., and Kostetskii, E.Ya., Features of the corrective action of polar lipids and bioantioxidants from marine hydrobionts in disorders of lipid and carbohydrate metabolism, Biomed. K-him., 2012, vol. 58, no. 2, pp. 189–198. https://doi.org/10.18097/PBMC20125802189

    Article  CAS  Google Scholar 

  28. Kushnerova, N.F., Correction of the lipid composition of blood plasma and erythrocyte membranes in experimental dyslipidemia with a lipid complex from the extract of brown algae Saccharina japonika, Zdor. Med. Ekol. Nauka, 2018, vol. 75, no. 3, pp. 65–73. https://doi.org/10.5281/zenodo.1488050

    Article  Google Scholar 

  29. Liu, L., Hu, Q., Wu, H., Xue, Y., Cai, L., Fang, M., Liu, Z., Yao, P., Wu, Y., and Gong, Z., Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice, J. Nutr. Biochem., 2016, vol. 32, pp. 171–180. https://doi.org/10.1016/j.jnutbio.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Mišurcová, L., Ambrožová, J., and Samek, D., Seaweed lipids as nutraceuticals, Adv. Food. Nutr. Res., 2011, vol. 64, pp. 339–355. https://doi.org/10.1016/B978-0-12-387669-0.00027-2

    Article  CAS  PubMed  Google Scholar 

  31. Murthy, S., Albright, E., Mathur, S.N., and Field, F.J., Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism, Lipid Res., 1988, vol. 29, no. 6, pp. 773–780. https://doi.org/10.1016/S0022-2275(20)38490-X

    Article  CAS  Google Scholar 

  32. Noeman, S.A., Hamooda, H.E., and Baalash, A.A., Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats, Diabetol. Metab. Syndr., 2011, vol. 3, no. 1, pp. 17–24. https://doi.org/10.1186/1758-5996-3-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novgorodtseva, T.P., Somova, L.M., Gvozdenko, T.A., Karaman, Yu.K., and Bival’kevich, N.V., Alimentarnaya dislipidemiya: eksperimental’no-morfologicheskie aspekty (Nutritional Dyslipidemia: Experimental and Morphological Aspects), Vladivostok: Dal’nevost. Feder. Univ., 2011.

  34. Öngün Yılmaz, H., Hyperlipidemia and nutrition, Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi, 2018, vol. 2, no. 1, pp. 72–82.

    Google Scholar 

  35. Paoletti, F., Aldinucci, D., Mocali, A., and Caparrini, A., A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts, Anal. Biochem., 1986, vol. 154, no. 2, pp. 536–541. https://doi.org/10.1016/0003-2697(86)90026-6

    Article  CAS  PubMed  Google Scholar 

  36. Patten, A.R., Brocardo, P.S., and Christie, B.R., Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure, J. Nutr. Biochem., 2013, vol. 24, no. 5, pp. 760–769. https://doi.org/10.1016/j.jnutbio.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Podkorytova, A.V., Ignatova, T.A., Burova, N.V., and Usov, A.I., Promising directions for the rational use of commercial red algae of the genus Ahnfeltia, harvested in the coastal zones of the Russian seas, Tr. VNIRO, 2019, vol. 176, pp. 14–26.

    Article  Google Scholar 

  38. Ramji, D.P., Polyunsaturated fatty acids and atherosclerosis: insights from pre-clinical studies, Eur. J. Lipid. Sci. Tech., 2019, vol. 121, no. 1, p. 1800029. https://doi.org/10.1002/ejlt.201800029

    Article  CAS  Google Scholar 

  39. Refaat, B., Abdelghany, A.H., Ahmad, J., Abdalla, O.M., Elshopakey, G.E., Idris, S., and El-Boshy, M., Vitamin D(3) enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat, Biofactors, 2022, vol. 48, no. 2, pp. 498–513. https://doi.org/10.1002/biof.1804

    Article  CAS  PubMed  Google Scholar 

  40. Richard, D., Kefi, K., Barbe, U., Bausero, P., and Visioli, F., Polyunsaturated fatty acids as antioxidants, Pharmacol. Res., 2008, vol. 57, no. 6, pp. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  41. Ryzhenkov, V.E., Makarov, V.G., Remezova, O.V., and Makarova, M.N., Methodological recommendations for studying the hypolipidemic and antisclerotic effects of drugs, in Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya (Guidelines for Conducting Preclinical Studies of Drugs. Part 1), Moscow: Grif i K, 2012, pp. 445–452.

  42. Shibabaw, T., Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease, Mol. Cell. Biochem., 2021, vol. 476, no. 2, pp. 993–1003. https://doi.org/10.1007/s11010-020-03965-7

    Article  CAS  PubMed  Google Scholar 

  43. Sirichaiwetchakoon, K., Lowe, G.M., Kupittayanant, S., Churproong, S., and Eumkeb, G., Pluchea indica (L.) less. tea ameliorates hyperglycemia, dyslipidemia, and obesity in high fat diet-fed mice, Evidence-Based Complementary Altern. Med., 2020, vol. 2020, p. 8746137. https://doi.org/10.1155/2020/8746137

    Article  Google Scholar 

  44. Susanto, E., Fahmi, A.S., Hosokawa, M., and Miyashita, K., Variation in lipid components from 15 species of tropical and temperate seaweeds, Mar. Drugs, 2019, vol. 17, no. 11, pp. 630–651. https://doi.org/10.3390/md17110630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svetashev, V.I. and Vaskovsky, V.E., A simplified technique for thin-layer microchromatography of lipids, J. Chromatogr., 1972, vol. 67, no. 2, pp. 376–3788. https://doi.org/10.1016/S0021-9673(01)91245-2

    Article  CAS  PubMed  Google Scholar 

  46. Torres, N., Guevara-Cruz, M., Velazquez-Villegas, L.A., and Tovar, A.R., Nutrition and atherosclerosis, Arch. Med. Res., 2015, vol. 46, no. 5, pp. 408–426. https://doi.org/10.1016/j.arcmed.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  47. Yanagita, T. and Nagao, K., Functional lipids and the prevention of the metabolic syndrome, Asian Pac. J. Clin. Nutr., 2008, vol. 17, suppl. 1, no. 1, pp. 189–191.

Download references

Funding

This study was carried out within the framework of a State Assignment, project no. 0211-2021-0014, “Ecological and Biochemical Processes in Marine Ecosystems: The Role of Natural and Anthropogenic Factors” (state registration no. 121-21500052-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sprygin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Animal studies were carried out in accordance with the order of the Ministry of Health and Social Development of Russia of April 1, 2016, no. 199n “On Approval of the Rules of Laboratory Practice” and the requirements of GOST R 53434-2009 “Principles of Good Laboratory Practice.” This study was approved by the Bioethics Commission of the Il’ichev Pacific Oceanological Institute of the Far Eastern Branch of the Russian Academy of Sciences (protocol No. 16 dated April 15, 2021). The experiments were performed in accordance with the requirements of the Federation of European Laboratory Animal Science Associations (FELASA) in compliance with the “Regulations and International Recommendations of the European Convention for the Protection of Vertebrate Animals Used for Experiments or Other Scientific Purposes” (Strasbourg, 1986).

Additional information

Translated by L. Solovyova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprygin, V.G., Kushnerova, N.F., Fomenko, S.E. et al. Lipid-Correcting and Antioxidant Effects of the Lipid Complex from the Red Marine Algae Ahnfeltia tobuchiensis under the Conditions of a High-Fat Diet. Biol Bull Russ Acad Sci 51, 37–46 (2024). https://doi.org/10.1134/S1062359023601982

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023601982

Keywords:

Navigation