Skip to main content
Log in

Intrabreed Diversity and Relationships between Races of the Honey Bee Apis mellifera carpathica and Apis mellifera caucasica

  • GENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Based on the analysis of 94 sequences of the mtDNA CO1 gene, the intrabreed diversity and evolutionary relationships of bees from Russia, Ukraine, Armenia, Kyrgyzstan, Tajikistan, and Poland were studied. We revealed two main haplotypes corresponding to the races A. m. carpathica and A. m. caucasica, which are common in the regions studied. However, in Armenia bees of the Caucasian race predominate, and in Poland, the Carpathian A. m. caucasica has a higher haplotype diversity: one of its haplotypes is formed by samples of bees from the Crimean mountain breed, possibly an independent race A. m. taurica. There are two clusters on the phylogenetic tree: one cluster includes A. m. mellifera and A. m. iberica (evolutionary line M), the other (line C), A. m. ligustica, A. m. carpathica, and A. m. caucasica. Haplotypes of A. m. caucasica have more substitutions per site, indicating their earlier origin compared to A. m. ligustica and A. m. carpathica. According to the time of divergence of A. mellifera and A. cerana at 6 Ma, the divergence of all races of line C is estimated from 1.3 to 0.6 Ma; races A. m. caucasica at 0.35–0.25 Ma and A. m. carpathica at 0.2–0.04 Ma. When using universal primers with optimization of amplification conditions for the mtDNA CO1 gene region, a nonsynonymous G/A SNP was detected in position 4 (680 bp) which can be used to distinguish A. m. carpathica from A. m. ligustica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abd-El-Samie, E.M., Elkafrawy, I., Osama, M., and Ageez, A., Molecular phylogeny and identification of the Egyptian wasps (Hymenoptera: Vespidae) based on COI mitochondrial gene sequences, Egypt. J. Biol. Pest Control, 2018, vol. 28, p. 36. https://doi.org/10.1186/s41938-018-0038-z

    Article  Google Scholar 

  2. Alpatov, V.V., Porody medonosnoi pchely i ikh ispol’zovanie v sel’skom khozyaistve (Honey Bee Breeds and Their Use in Agriculture), Moscow, 1948.

    Google Scholar 

  3. Arias, M.C. and Sheppard, W.S., Molecular phylogenetics of honeybee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence, Mol. Phylogenet. Evol., 1996, vol. 5, no. 3, pp. 557–566. https://doi.org/10.1006/mpev.1996.0050

    Article  CAS  PubMed  Google Scholar 

  4. Avise, J.C., Molecular markers, natural history and evolution, New York: Chapman and Hall, 1994. https://doi.org/10.1007/978-1-4615-2381-9

  5. Bandelt, H.J., Foster, P., and Rohl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  6. Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., and Drummond, A.J., Beast 2: a software platform for Bayesian evolutionary analysis, PLoS Comput. Biol., 2014, vol. 10, no. 4, p. e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouga, M., Alaux, C., Bienkowska, M., Büchler, R., Carreck, N.L., Cauia, E., Chlebo, R., Dahle, B., Dall’Olio, R., De la Rua, P., Gregorc, A., Ivanova, E., Kence, A., Kence, M., Kezic, N., Kiprijanovska, H., Kozmus, P., Kryger, P., Le Conte, Y., Lodesani, M., Murilhas, A.M., Siceanu, A., Soland, G., Uzunov, A., and Wilde, J., A review of methods for discrimination of honey bee populations as applied to European beekeeping, J. Apic. Res., 2011, vol. 50, no. 1, pp. 51–84. https://doi.org/10.3896/IBRA.1.50.1.06

    Article  Google Scholar 

  8. Bykova, T.O., Triseleva, T.A., Ivashov, A.V., and Safonkin, A.F., Morphogenetic diversity of the honeybee Apis mellifera L. from the mountain–forest zone of Crimea, Biol. Bull. (Moscow), 2016, vol. 43, no. 6, pp. 541–546.

    Article  CAS  Google Scholar 

  9. Chochia, N.G. and Evdokimov, S.P., Paleogeografiya Pozdnego kainozoya Vostochnoi Evropy i Zapadnoi Sibiri (lednikovaya i ledovo-morskaya kontseptsii) (Paleogeography of the Late Cenozoic of Eastern Europe and Western Siberia (Glacial and Ice-Marine Concepts)), Chochia, N.G., Saransk: Mordov. Univ., 1993.

  10. Cornuet, J.M. and Garnery, L., Mitochondrial DNA variability in honeybees and its phylogeographic implications, Apidologie, 1991, vol. 22, pp. 627–642. https://doi.org/10.1051/apido:19910606

    Article  CAS  Google Scholar 

  11. Eimanifar, A., Kimball, R.T., Braun, E.L., Moustafa, D.M., Haddad, N., Fuchs, S., Grünewald, B., and Ellis, J.D., The complete mitochondrial genome of the Egyptian honey bee, Apis mellifera lamarckii (Insecta: Hymenoptera: Apidae), Mitochondrial DNA, 2017, vol. 2, no. 1, pp. 270–272. https://doi.org/10.1080/23802359.2017.1325343

    Article  PubMed  PubMed Central  Google Scholar 

  12. Excoffier, L. and Lischer, H.E.L., Arlequin ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2011, vol. 10, pp. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  13. Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotech., 1994, vol. 3, no. 5, pp. 294–299.

    CAS  Google Scholar 

  14. Franck, P., Garnery, L., Celebrano, G., Solignac, M., and Cornuet, J.M., Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula), Mol. Ecol., 2000, vol. 9, no. 7, pp. 907–921. https://doi.org/10.1046/j.1365-294X.2000.00945.x

    Article  CAS  PubMed  Google Scholar 

  15. Garnery, L., Vautrin, D., Cornuet, J.M., and Solignac, M., Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data, Apidology, 1991, vol. 22, pp. 87–92. https://doi.org/10.1051/apido:19910111

    Article  CAS  Google Scholar 

  16. Hajibabaei, M., Singer, G.A., Hebert, P.D.N., and Hickey, D.A., DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics, Tr. Genet., 2007, vol. 23, no. 4, pp. 167–172. https://doi.org/10.1016/j.tig.2007.02.001

    Article  CAS  Google Scholar 

  17. Han, T., Lee, W., Lee, S., Park, I.G., and Park, H., Reassessment of species diversity of the subfamily Denticollinae (Coleoptera: Elateridae) through DNA barcoding, PLoS One, 2016, vol. 11, no. 2, p. e0148602. https://doi.org/10.1371/journal.pone.0148602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Mitochondrial DNA in the study of bee populations in the Urals, in Materialy mezhregional’nogo soveshchaniya entomologov Sibiri i Dal’nego Vostoka (Proc. Interregion. Meet. of Entomologists of Siberia and the Far East), Novosibirsk, 2006, pp. 72–74.

  19. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Macro- and microevolution of the honey bee Apis mellifera, Biomika, 2017a, vol. 9, no. 2, pp. 60–70.

    Google Scholar 

  20. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., The main methods for identifying subspecies of Apis mellifera bees, Biomika, 2017b, vol. 9, no. 2, pp. 71–82.

  21. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Modern methods for assessing the taxonomic affiliation of bee colonies, Ekol. Genet., 2017c, vol. 15, no. 4, pp. 41–51. https://doi.org/10.17816/ecogen15441-51

    Article  Google Scholar 

  22. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Three scenarios for the evolution of Apis mellifera bee subspecies, Pchelovodstvo, 2018, no. 1, pp. 16–18.

  23. Ilyasov, R., Nikolenko, A., Tuktarov, V., Goto, K., Takahashi, J.-I., and Kwon, H.W., Comparative analysis of mitochondrial genomes of the honey bee subspecies A. m. caucasica and A. m. carpathica and refinement of their evolutionary lineages, J. Apicult. Res., 2019, vol. 58, no. 4, pp. 567–579. https://doi.org/10.1080/00218839.2019.1622320

    Article  Google Scholar 

  24. Ilyasov, R.A., Lee, M.-L., Takahashi, J.-I., Kwon, H.W., and Nikolenko, A.G., A revision of subspecies structure of western honey bee Apis mellifera, Saudi J. Biol. Sci., 2020, vol. 27, pp. 3615–3621. https://doi.org/10.1016/j.sjbs.2020.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ilyasov, R.A., Han, G.Y., Lee, M.L., Kim, K.W., Park, J.H., Takakhashi, J.I., Kvon, H.W., and Nikolenko, A.G., Phylogenetic relationships among honey bee subspecies Apis mellifera caucasia and Apis mellifera carpathica based on the sequences of the mitochondrial genome, Russ. J. Genet., 2021, vol. 57, no. 6, pp. 697–710. https://doi.org/10.1134/S1022795421060041

    Article  Google Scholar 

  26. Kandemir, I., Ozkan, A., and Fuchs, S., Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach, Apidologie, 2011, vol. 42, no. 5, pp. 618–627. https://doi.org/10.1007/s13592-011-0063-3

    Article  Google Scholar 

  27. Komarov, P.M., Razvedenie pchel (Bee Breeding), Moscow: Sel’khozgiz, 1937.

  28. Kukrer, M., Kence, M., and Kence, A., Genetic evidences for the impact of anthropogenic factors on honey bee diversity, BioRxiv, 2017, vol. 1, pp. 1–28. https://doi.org/10.1101/154195

    Article  CAS  Google Scholar 

  29. Maa, T.C., An inquiry into the systematics of the tribus Apidini or honey bees (Himenoptera), Treubia, 1953, vol. 21, pp. 525–640.

    Google Scholar 

  30. Meyer, C.P. and Paulay, G., DNA barcoding: error rates based on comprehensive sampling, PLoS Biol., 2006, vol. 3, no. 12, pp. 2229–2238. https://doi.org/10.1371/journal.pbio.0030422

    Article  CAS  Google Scholar 

  31. Mikhailov, A.S., To the biometric characteristics of the Caucasian mountain gray bee, Pchelovodnyi Mir, 1927, no. 3, pp. 84–86.

  32. Pentek-Zakar, E., Oleksa, A., Borowik, T., and Kusza, S., Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies, Ecol. Evol., 2015, vol. 5, no. 23, pp. 5456–5467. https://doi.org/10.1002/ece3.1781

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rubinoff, D., Cameron, S., and Will, K., A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification, J. Hered., 2006, vol. 97, no. 6, pp. 581–594. https://doi.org/10.1093/jhered/esl036

    Article  CAS  PubMed  Google Scholar 

  34. Ruttner, F., Biogeography and Taxonomy of Honeybees, Berlin: Springer Verlag, 1988.

    Book  Google Scholar 

  35. Ruttner, F., Naturgeschichte der Honigbienen, Munich: Ehrenwirth Verlag; Bukarest: Apimondia, 1992, рр. 380–383.

  36. Safonkin, A.F., Triseleva, T.A., and Bykova, T.O., Intraracial diversity of the Carpathian race of Hhoneybees Apis mellifera carpatica, Biol. Bull. (Moscow), 2019, vol. 46, no. 5, pp. 492–499.

    Article  Google Scholar 

  37. Smith, D.R., Mitochondrial DNA and Honey bee biogeography, in Diversity in the Genus Apis, Smith D.R., Ed., Boulder, CO: Westview Press, 1991, pp. 131–176.

    Google Scholar 

  38. Smith, D.R., Genetic diversity in Turkish honey bees, Uludag Arıcılık Dergisi, 2002, vol. 2, no. 3, pp. 10–17.

    Google Scholar 

  39. Syromyatnikov, M.Y., Borodachev, A.V., Kokina, A.V., and Popov, V.N., A molecular method for the identification of honey bee subspecies used by beekeepers in Russia, Insects, 2018, vol. 9, no. 1, p. E10. https://doi.org/10.3390/insects9010010

    Article  Google Scholar 

  40. Tamura, K. and Stecher, G., and Sudhir Kumar, MEGA11: Molecular Evolutionary Genetics Analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tihelka, E., Cai, Ch., Pisani, D., and Donoghue, Ph.C.J., Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera), Sci. Rep., 2020, vol. 10, p. 14515. https://doi.org/10.1038/s41598-020-71393-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yule, G.U., A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, FRS, Philos. Trans. R. Soc., B, 1925, vol. 213, pp. 21–87. https://doi.org/10.1098/rstb.1925.0002

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Kamil Karaban, institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw for providing material from Poland and A.A. Yatsuk, Institute for Problems of Ecology and Evolution, of the Russian Academy of Sciences, for collecting material from the Stavropol krai and the Nairi Region of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Triseleva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triseleva, T.A., Safonkin, A.F., Bykova, T.O. et al. Intrabreed Diversity and Relationships between Races of the Honey Bee Apis mellifera carpathica and Apis mellifera caucasica. Biol Bull Russ Acad Sci 50, 546–554 (2023). https://doi.org/10.1134/S1062359023601052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023601052

Keywords:

Navigation