Skip to main content
Log in

Separate and Mutual Effects of BIRB796 and Bortezomib on pHsp27 and Viability of U87MG Glioma Cells

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Hsp27 phosphorylation is associated with many pathways in glioma, such as tumor cell proliferation and apoptosis inhibition. The aim of this study is to examine the separate and mutual effects of BIRB796 and bortezomib on pHsp27 and to investigate their effects on the viability of U87MG glioma cells. At the same time, the effects of the agents on the p38MAPK enzyme and caspase 3, which plays a role in the mechanism of apoptosis, were also investigated. The cytotoxic effect of bortezomib and BIRB796 on U87MG cells was investigated by MTT method. Hsp27 and pHsp27 proteins expression levels were exhibited by Western Blot analysis. Also, we examined the effects of BIRB796 on p38MAPK (α, β) enzyme inhibition and caspase 3 activity. According to the MTT results, BIRB796 did not significantly reduce cell proliferation in a dose-dependent manner, but bortezomib significantly reduced it in a dose and time-dependent manner. In Western blot analyses, 5 nM bortezomib, and 100, 250, 500 nM BIRB796 concentrations that show neither a cytotoxic nor a proliferative effect on the cells were used as combined treatment. It was seen that 5 nM bortezomib treatment significantly induced pHsp27 (76%) and Hsp27 (48%) expression levels in the glioma cells. Also it was found that BIRB796 treatments significantly decreased the level of Hsp27 and pHsp27. The combined treatments significantly reduced pHsp27 expression level. Our results showed that all treatments also significantly increased caspase 3 activation. In addition, BIRB796 inhibited p38α and p38β activities depending on time, and this agent effect on p38α was stronger than p38β. All results indicate that BIRB796 and bortezomib have additive effects on cell viability and caspase 3. Also BIRB796 agent may be an effective therapeutic option in cancer cells by reducing cell resistance, apoptosis and pHsp27 expression in the treatment of brain cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., Integrins, in Molecular Biology of the Cell, Garland Science, 2002, 4th ed.

    Google Scholar 

  2. Chatterjee, S. and Burns, T.F., Targeting heat shock proteins in cancer: a promising therapeutic approach, Int. J. Mol. Sci., 2017, vol. 18, no. 9, p. 1978. https://doi.org/10.3390/ijms18091978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chauhan, D., Hideshima, T., and Anderson, K.C., A novel proteasome inhibitor NPI-0052 as an anticancer therapy, Br. J. Cancer, 2006, vol. 95, no. 8, pp. 961–965. https://doi.org/10.1038/sj.bjc.6603406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cornford, P.A., Dodson, A.R., Parsons, K.F., Desmond, A.D., Woolfenden, A., et al., Heat shock protein expression independently predicts clinical outcome in prostate cancer, Cancer Res., 2000, vol. 60, no. 24, pp. 7099–7105.

    CAS  PubMed  Google Scholar 

  5. Durmus, H., Mertoglu, E., Sticht, H., Ceylaner, S., Kulaksızoglu, I.B., et al., Episodic psychosis, ataxia, motor neuropathy with pyramidal signs (PAMP syndrome) caused by a novel mutation in ADPRHL2 (AHR3), Neurol. Sci., 2021, pp. 1–8. https://doi.org/10.1007/s10072-021-05100-w

  6. Freshney, R.I., Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, Wiley, 2015.

    Google Scholar 

  7. Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., et al., MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α, Science, 2002, vol. 295, no. 5558, pp. 1291–1294. https://doi.org/10.1126/science.1067289

    Article  CAS  PubMed  Google Scholar 

  8. Gurgis, F.M., Ziaziaris, W., and Munoz, L., Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting, Mol. Pharmacol., 2014, vol. 85, pp. 345–356. https://doi.org/10.1124/mol.113.090365

    Article  CAS  PubMed  Google Scholar 

  9. Jerby-Arnon, L., Shah, P., Cuoco, M.S., Rodman, C., Su, M.J., et al., A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade, Cell, 2018, vol. 175, no. 4, pp. 984–997. https://doi.org/10.1016/j.cell.2018.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, D.J., Jia, S.J., Dai, Z., and Li, Y.J., Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells, J. Mol. Cell. Cardiol., 2006, vol. 40, no. 4, pp. 529–539. https://doi.org/10.1016/j.yjmcc.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  11. Jin, X., Mo, Q., Zhang, Y., Gao, Y., Wu, Y., et al., The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer, Cancer Biol. Ther., 2016, vol. 17, no. 5, pp. 566–576. https://doi.org/10.1080/15384047.2016.1177676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kapranos, N., Kominea, A., Konstantinopoulos, P., Savva, S., Artelaris, S., et al., Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance, Journal of Cancer Research and Clinical Oncology, 2002, vol. 128, no. 8, pp. 426–32. https://doi.org/10.1007/s00432-002-0357-y

    Article  CAS  PubMed  Google Scholar 

  13. Khandia, R., Munjal, A.K., Iqbal, H.M.N., and Dhama, K., Heat Shock Proteins: Therapeutic Perspectives in Inflammatory Disorders, Recent Patents on Inflammation & Allergy Drug Discovery, 2016. https://doi.org/10.2174/1872213x10666161213163301

  14. Kim, T.W., Michniewicz, M., Bergmann, D.C., and Wang, Z.Y., Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway, Nature, 2012. https://doi.org/10.1038/nature10794

  15. Kuramitsu, Y., Wang, Y., Taba, K., Suenaga, S., Ryozawa, S., et al., Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells, Anticancer Res., 2012, vol. 32, no. 6, pp. 2295–2299.

    CAS  PubMed  Google Scholar 

  16. Liu, Y., Gray, N.S., Rational design of inhibitors that bind to inactive kinase conformations, Nat. Chem. Biol., 2006, vol. 2, no. 7, pp. 358–364. https://doi.org/10.1038/nchembio799

    Article  CAS  PubMed  Google Scholar 

  17. Moens, U. and Kostenko, S., Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases, Biol. Chem., 2013, vol. 394, no. 9, pp. 1115–1132. https://doi.org/10.1515/hsz-2013-0149

    Article  CAS  PubMed  Google Scholar 

  18. Önay Uçar, E. and Sengelen, A., Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells, Cell Stress Chaperones, 2019, vol. 24, no. 4, pp. 763–775. https://doi.org/10.1007/s12192-019-01004-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pargellis, C., Tong, L., Churchill, L., Cirillo, P.F., Gilmore, T., et al., Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site, Nat. Struct. Biol., 2002, vol. 9, pp. 268–272. https://doi.org/10.1038/nsb770

    Article  CAS  PubMed  Google Scholar 

  20. Parsons, D.W., Jones, S., Zhang, X., Lin, J.C.H., Leary, R.J., et al., An integrated genomic analysis of human glioblastoma multiforme, Science, 2008, vol. 321, no. 5897, pp. 1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavan, S., Musiani, D., Torchiaro, E., Migliardi, G., Gai, M., et al., HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor, Int. J. Cancer, 2014, vol. 134, pp. 1289–1299. https://doi.org/10.1002/ijc.28464

    Article  CAS  PubMed  Google Scholar 

  22. Peregrin, S., Jurado-Pueyo, M., Campos, P.M., Sanz-Moreno, V., Ruiz-Gomez, A., et al., Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK, Curr. Biol., 2006, vol. 16, no. 20, pp. 2042–2047. https://doi.org/10.1016/j.cub.2006.08.083

    Article  CAS  PubMed  Google Scholar 

  23. Rocchi, P., So, A., Kojima, S., Signaevsky, M., Beraldi, E., et al., Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer, Cancer Res., 2004, vol. 64, no. 18, pp. 6595–6602. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  24. Sahin, Z., Ertas, M., Berk, B., Biltekin, S.N., Yurttas, L., and Demirayak, S., Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl) thiazole derivatives, Bioorg. Med. Chem., 2018, vol. 26, no. 8, pp. 1986–1995. https://doi.org/10.1016/j.bmc.2018.02.048

    Article  CAS  PubMed  Google Scholar 

  25. Sakai, A., Otani, M., Miyamoto, A., Yoshida, H., Furuya, E., and Tanigawa, N., Identification of phosphorylated serine-15 and-82 residues of HSPB1 in 5-fluorouracil-resistant colorectal cancer cells by proteomics, J. Proteomics, 2012, vol. 75, no. 3, pp. 806–818. https://doi.org/10.1016/j.jprot.2011.09.023

    Article  CAS  PubMed  Google Scholar 

  26. Samali, A., Robertson, J.D., Peterson, E., Manero, F., van Zeijl, L. et al., Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli, Cell Stress Chaperones, 2001, vol. 6, no. 1, pp. 49–58. https://doi.org/10.1379/1466-1268(2001)006<0049:hpmotc>2.0.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sayama, K., Hanakawa, Y., Nagai, H., Shirakata, Y., Dai, X., et al., Transforming growth factor-β-activated kinase 1 is essential for differentiation and the prevention of apoptosis in epidermis, J. Biol. Chem., 2006. https://doi.org/10.1074/jbc.M601065200

  28. Shah, S.P., Nooka, A.K., Jaye, D.L., Bahlis, N.J., Lonial, S., and Boise, L.H., Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation, Oncotarget, 2016, vol. 7, no. 37, p. 59727. https://doi.org/10.18632/oncotarget.10847

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taba, K., Kuramitsu, Y., Ryozawa, S., Yoshida, K., Tanaka, T., et al., Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells, Anticancer Research, 2010, vol. 30, no. 7, pp. 2539–2543.

    CAS  PubMed  Google Scholar 

  30. Takeda, K. and Ichijo, H., Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system, Genes Cells, 2002, vol. 7, no. 11, pp. 1099–1111. https://doi.org/10.1046/j.1365-2443.2002.00591.x

    Article  CAS  PubMed  Google Scholar 

  31. Uçar, E.Ö., Arda, N., and Aitken, A., Extract from mistletoe, Viscum album L., reduces Hsp27 and 14-3-3 protein expression and induces apoptosis in C6 rat glioma cells, Genet. Mol. Res., 2012, vol. 11, no. 3, pp. 2801–2813. https://doi.org/10.4238/2012.August.24.5

    Article  PubMed  Google Scholar 

  32. Venkatakrishnan, C.D., Dunsmore, K., Wong, H., Roy, S., Sen, C.K., et al., HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest, Am. J. Physiol.: Heart Circ. Physiol., 2008, vol. 294, no. 4, pp. 1736–1744. https://doi.org/10.1152/ajpheart.91507.2007

    Article  CAS  Google Scholar 

  33. Wang, H.Q., Yang, B., Xu, C.L., Wang, L.H., Zhang, Y.X., et al., Differential phosphoprotein levels and pathway analysis identify the transition mechanism of LNCaP cells into androgen-independent cells, Prostate, 2010, vol. 70, no. 5, pp. 508–517. https://doi.org/10.1002/pros.21085

    Article  CAS  PubMed  Google Scholar 

  34. Xu, F., Yang, T., Fang, D., Xu, Q., and Chen, Y., An investigation of heat shock protein 27 and P glycoprotein mediated multi-drug resistance in breast cancer using liquid chromatography-tandem mass spectrometry-based targeted proteomics, J. Proteomics, 2014, vol. 108, pp. 188–197. https://doi.org/10.1016/j.jprot.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  35. Yasui, H., Hideshima, T., Ikeda, H., Jin, J., Ocio, E.M., et al., BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth, Br. J. Haematol., 2007, vol. 136, no. 3, pp. 414–423. https://doi.org/10.1111/j.1365-2141.2006.06443.x

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, L., Wang, Y., Xu, Y., Sun, Q., Liu, H., et al., BIRB796, an inhibitor of p38 mitogen-activated protein kinase, ınhibits proliferation and ınvasion in glioblastoma cells, ACS Omega., 2021, vol. 6, no. 17, pp. 11466–11473. https://doi.org/10.1021/acsomega.1c00521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, J., Wang, J., Huang, J., Du, W., He, Y., et al., MicroRNA‑140‑5p regulates the proliferation, apoptosis and inflammation of RA FLSs by repressing STAT3, Exp. Ther. Med., 2021, vol. 21, no. 2, pp. 1–1. https://doi.org/10.3892/etm.2020.9602

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the University.

Funding

This work was supported by the Istanbul University Research Foundation, Turkey (Project no. 24496).

Author information

Authors and Affiliations

Authors

Contributions

SNB made the conception, design and performed the experiments. EÖU provided the development of methodology, and financial support. SNB wrote the manuscript. EÖU revised the manuscript. All authors read and approved the fnal manuscript.

Corresponding author

Correspondence to Sevde Nur Biltekin.

Ethics declarations

The authors declare no conficts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevde Nur Biltekin, Evren Önay Uçar Separate and Mutual Effects of BIRB796 and Bortezomib on pHsp27 and Viability of U87MG Glioma Cells. Biol Bull Russ Acad Sci 50, 761–772 (2023). https://doi.org/10.1134/S1062359023600976

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023600976

Keywords:

Navigation