Skip to main content
Log in

Natural Radionuclides (226Ra, 232Th, and 40K) in Soil-Forming Rocks in the European Part of Russia

  • Published:
Biology Bulletin Aims and scope Submit manuscript


The ranges and average values of the specific activity of natural radionuclides (226Ra, 232Th, and 40K) have been established in the main lithological types of soil-forming rocks (red–brown clays, loess, cover, glacial, lake–glacial, fluvioglacial, and alluvial deposits, and the eluvial–deluvial group of primary carbonate deposits). The lowest content of radionuclides is characteristic of alluvial and fluvioglacial deposits and their highest content is in lake–glacial, eluvial–deluvial carbonate deposits, and moraines. The inheritance of natural radionuclides by soil-forming rocks from weathering crusts has been revealed, which is most clearly manifested for rocks of glacial genesis and eluvial–deluvial carbonate deposits. The relationship between the content of radionuclides and the particle size distribution has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Samoilova, E.M., Pochvoobrazuyushchie porody (Soil-Forming Rocks), Moscow: Mosk. Gos. Univ., 1991.

  2. Barsukov, A.O. and Yazykeev, D.V., Horizontal and vertical migration of 40K, 137Cs, 226Ra, 232Th, and 241Am on cultivated slope agricultural landscapes of the Penza region of varying degrees of steepness, Izv. Penz. Pedagog. Univ. im. V.G. Belinskogo, 2012, no. 29, pp. 369–374.

  3. Manigandan, P.K. and Manikandan, N.M., Migration of radionuclide in soil and plants in the Western Ghats environment, Iran. J. Radiat. Res., 2008, vol. 6, no. 1, pp. 7–12.

    Google Scholar 

  4. Gomes, M.E.P., Martins, L.M.O., Neves, L.J.P.F., et al., Natural radiation and geochemical data for rocks and soils, in the North International Duoro Cliffs (NE Portugal), J. Geochem. Explor., 2013, vol. 130, pp. 60–64.

    Article  CAS  Google Scholar 

  5. Sources, effects and risks of ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2017 Report, New York: United Nations (UN), 2018.

  6. Shcheglov, A.I. and Tsvetnova, O.B., Biological cycle of 137Cs and 40K in oak forests and agrophytocenoses on dark gray forest soils of the Tula region of Russia, Radiats. Biol., Radioekol., 2017, vol. 57, no. 2, pp. 201–209.

    Article  Google Scholar 

  7. Panitskii, A.V., Lukashenko, S.N., and Magasheva, R.Yu., Features of the vertical distribution of radionuclides in the soils of the conditionally clean territory of the former Semipalatinsk test site, Radiats. Biol., Radioekol., 2016, vol. 56, no. 6, pp. 623–638.

    Article  Google Scholar 

  8. Goncharov, E.A. and Pigalin, D.I., Distribution of natural and technogenic radionuclides in forest ecosystems of the Bolshaya Kokshaga Reserve, Vestn. PGTU, 2013, vol. 20, no. 4, pp. 76–87.

    Google Scholar 

  9. Buraeva, E.A., Malyshevskii, V.S., Varduni, T.V., et al., The content and distribution of natural radionuclides in various types of soil of the Rostov region, Sovr. Probl. Nauki Obraz., 2013, no. 4, pp. 1–9.

  10. Titaeva, N.A., Yadernaya geokhimiya (Nuclear Geochemistry), Moscow: Mosk. Gos. Univ., 2000, 2nd ed.

  11. Pavlidou, S., Koroneos, A., Papastefanou, C., et al., Natural radioactivity of granites used as building materials, J. Environ. Radioact., 2006, no. 89, pp. 48–60.

  12. Shuktomova, I.I., Titaeva, N.A., Taskaev, A.I., et al., Behavior of 238U, 232Th, and 226Ra in mountain tundra soils, Pochvovedenie, 1983, no. 8, pp. 49–53.

  13. Baranov, V.I., Morozova, N.G., Kunasheva, K.G., et al., Geochemistry of some natural radioactive elements in soils, Pochvovedenie, 1963, no. 8, pp. 11–20.

  14. Balykin, D.N. and El’chininova, O.A., Natural radionuclides in the soils of the Uimon basin (Central Altai), Polzunov. Vestn., 2006, no. 2, pp. 309–312.

  15. Egorova, I.A., Puzanov, A.V., Balykin, S.N., et al., Natural radionuclides (238U, 232Th, 40K) in high-mountain soils of the North-West Alay, Mir Nauki, Kul’tury Obraz., 2007, vol. 4, no. 7, pp. 16–19.

    Google Scholar 

  16. Dubenok, N.N., Tobratov, S.A., Mazhaisky, Yu.A., and Kononova, G.A., Natural and technogenic factors of natural radioactivity of soils in the center of Russia. Accessed July 27, 2020.

  17. Peng-Chu Zhang and Patrick, V.B., Geochemistry of Soil Radionuclides, Madison, Wisconsin, USA: Soil Science Society of America Inc., 2002.

  18. Abdulaeva, A.S., Radioactivity of rocks, soils, natural waters of Dagestan and the effective doses caused by them, Yug Ross.: Ekol., Razvit., 2012, no. 3, pp. 89–106.

  19. Sharipov, S.M., Solov’ev, V.I., Baidzhanov, D.O., et al., Study of the natural radioactivity of rocks in the Kokshetau region, Nauka Tekhn. Kaz., 2004, no. 2, pp. 134–143.

  20. Smyslov, A.A., Uran i torii v zemnoi kore (Uranium and Thorium in the Earth’s Crust), Leningrad: Nedra, 1974.

  21. Manakhov, D.V. and Egorova, Z.N., Speciation of radium-226 in podzols of northeastern Sakhalin in the impact zone of the oil field, Eurasian Soil Sci., 2014, vol. 47, no. 6, pp. 608–612.

    Article  CAS  Google Scholar 

  22. Natsional’nyi atlas pochv Rossiiskoi Federatsii (National Soil Atlas of the Russian Federation), Shob, S.A., Ed., Moscow: Astel’, 2011.

    Google Scholar 

  23. Gagarina, E.I. and Abakumov, E.V., Pochvoobrazuyushchie porody s elementami chetvertichnoi geologii: uchebnoe posobie (Soil-Forming Rocks with Elements of Quaternary Geology: Tutorial), St. Petersburg: St.-Peterb. Gos. Univ., 2012.

  24. Gagarina, E.I., Litologicheskii faktor pochvoobrazovaniya (na primere Severo-Zapada Russkoi ravniny) (Lithological Factor of Soil Formation (on the Example of the North-West of the Russian Plain)), St. Petersburg: St.-Peterb. Gos. Univ., 2004.

  25. Pochvy prirodnykh zon Russkoi ravniny: uchebnoe posobie (Soils of Natural Zones of the Russian Plain: Tutorial), Aparin, B.F. and Kasatkina, G.A., Eds., St. Petersburg: St.-Peterb. Gos. Univ., 2008.

    Google Scholar 

  26. Aparin, B.F., Kasatkina, G.A., and Matinyan, N.N., Krasnaya kniga pochv Leningradskoi oblasti (Red Data Soils Book of the Leningrad Region), St. Petersburg: Aeroplan, 2007.

  27. Geologiya SSSR (Geology of the USSR), vol. 8: Krym: Poleznye iskopaemye (Crimea: Minerals), Muratov, M.V., Ed., Moscow: Nedra, 1969.

  28. Teoriya i praktika khimicheskogo analiza pochv. Monografiya (Theory and Practice of Chemical Analysis of Soils. Monograph), Vorob’eva, L.A., Ed., Moscow: GEOS, 2006.

  29. Aktivnost’ radionuklidov v schetnykh obraztsakh. Metodika izmerenii na gamma-spektrometrakh s ispol’zovaniem programmnogo obespecheniya “SpectraLine” (Activity of Radionuclides in Countable Samples. Measurement Technique on Gamma Spectrometers using the SpectraLine Software), Mendeleevo, 2014.

  30. Dmitriev, E.A., Matematicheskaya statistika v pochvovedenii: uchebnik (Mathematical Statistics in Soil Science: Textbook), Moscow: Mosk. Gos. Univ., 1995.

  31. Popov, A.I., Igamberdiev, V.M., and Alekseev, Yu.V., Statisticheskaya obrabotka eksperimental’nykh dannykh (Statistical Processing of Experimental Data), St. Petersburg: St.-Peterb. Gos. Univ, 2009.

  32. Aparin, B.F., Mingareeva, E.V., Sanzharova, N.I., et al., Concentrations of radionuclides (226Ra, 232Th, 40K, 137Cs) in chernozems of Volgograd oblast sampled in different years, Eurasian Soil Sci., 2017, vol. 50, no. 12, pp. 1395–1405.

    Article  CAS  Google Scholar 

  33. Geological Map of the Mountainous Crimea (Scale, 1 : 200 000), 1984. Accessed June 9, 2020.

  34. Arbuzov, S.I. and Rikhvanov, L.P., Geokhimiya radioaktivnykh elementov: uchebnoe posobie (Geochemistry of Radioactive Elements: Tutorial), Tomsk: Tomsk. Politech. Univ., 2010, 2nd ed.

  35. Geokhimiya redkikh, redkozemel’nykh i radioaktivnykh elementov v porodo- i rudoobrazuyushchikh protsessakh (Geochemistry of Rare, Rare-Earth, and Radioactive Elements in Rock and Ore-Forming Processes), Novosibirsk: Nauka, Sib. Otd., 1989.

  36. Novyi spravochnik khimika i tekhnologa. Radioaktivnye veshchestva. Vrednye veshchestva. Gigienicheskie normativy (New Handbook of Chemist and Technologist. Radioactive Substances. Harmful Substances. Hygienic Standards), St. Petersburg: ANO NPO Professional, 2004.

  37. Perel’man, A.I., Biokosnye sistemy Zemli (Biotic/Abiotic Systems of the Earth), Moscow: Nauka, 1977.

  38. Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of the Theory of Lithogenesis), Moscow: AN SSSR, 1962, vol. 1.

  39. Lebedev, S.V., Radioactivity of sedimentary rocks and the ecological situation on the territory of the Sablino natural monument, Vestn. St.-Peterb. Gos. Univ., 2012, vol. 7, no. 2, pp. 22–32.

    Google Scholar 

  40. Rachkova, N.G., Shuktomova, I.I., and Taskaev, A.I., The state of natural radionuclides of uranium, radium, and thorium in soils, Eurasian Soil Sci., 2010, vol. 43, no. 6, pp. 651–658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. V. Mingareeva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingareeva, E.V., Aparin, B.F., Korovin, S.V. et al. Natural Radionuclides (226Ra, 232Th, and 40K) in Soil-Forming Rocks in the European Part of Russia. Biol Bull Russ Acad Sci 49, 2397–2409 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: