Skip to main content
Log in

Ionizing Radiation Effects on Telomeres

  • MOLECULAR RADIOBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

To date, telomere length is an informative and important biomarker of the overall health, aging, effects of environmental and life-style factors, and stress. Recently a number of studies have suggested a correlation between the telomere length and the severity of radiation-induced effects. In this review this issue is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Shammas, M., Telomeres, lifestyle, cancer, and aging, Curr. Opin. Clin. Nutrit. Metab. Care, 2011, vol. 14, pp. 28–32. https://doi.org/10.1097/MCO.0b013e32834121b1

    Article  CAS  Google Scholar 

  2. Shim, G., Ricoul, M., Hempel, W., et al., Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis, Mutat. Res., 2014, vol. 760, pp. 1–17. https://doi.org/10.1016/j.mrrev.2014.01.0

    Article  CAS  Google Scholar 

  3. De Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev., 2005, vol. 19, pp. 2100–2110. https://doi.org/10.1101/gad.1346005

    Article  CAS  PubMed  Google Scholar 

  4. Palm, W. and De Lange, T., How shelterin protects mammalian telomeres, Ann. Rev. Genet., 2008, vol. 42, pp. 301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350

    Article  CAS  PubMed  Google Scholar 

  5. Ye, J. and Donigian, J., TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres, J. Biol. Chem., 2004, vol. 279, pp. 47264–47271. https://doi.org/10.1074/jbc.M409047200

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, D. and Podell, E., Multiple POT1–TPP1 proteins coat and compact long telomeric single-stranded DNA, J. Mol. Biol., 2011, vol. 410, pp. 10–17. https://doi.org/10.1016/j.jmb.2011.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhdanova, N. and Minina, J., Mammalian telomere biology, Mol. Biol., 2012, vol. 46, pp. 539–555.

    Article  CAS  Google Scholar 

  8. Li, J., Fuste, M., and Simavorian, T., TZAP: a telomere-associated protein involved in telomere length control, Science (Washington, D.C.), 2017, vol. 355, pp. 638–641. https://doi.org/10.1126/science.aah6752

    Article  CAS  Google Scholar 

  9. Olovnikov, A., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 1973, vol. 41, no. 1, pp. 181–190. https://doi.org/10.1016/0022-5193(73)90198-7

    Article  CAS  PubMed  Google Scholar 

  10. Harley, C. and Futcher, A., Telomeres shorten during ageing of human fibroblasts, Nature, 1990, vol. 345, pp. 458–460. https://doi.org/10.1038/345458a0

    Article  CAS  PubMed  Google Scholar 

  11. Fumagalli, M. and Rosiello, F., Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat. Cell Biol., 2012, vol. 14, pp. 355–365. https://doi.org/10.1038/ncb2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takai, H. and Smogorzewska, T., DNA damage foci at dysfunctional telomeres, Curr. Biol., 2003, vol. 13, pp. 1549–1556. https://doi.org/10.1016/s0960-9822(03)00542-6

    Article  CAS  PubMed  Google Scholar 

  13. Raynaud, C. and Hernandez, J., DNA damage repair and telomere length in normal breast, preneoplastic lesions, and invasive cancer, Am. J. Clin. Oncol., 2010, vol. 33, pp. 341–345. https://doi.org/10.1097/COC.0b013e3181b0c4c2

    Article  CAS  PubMed  Google Scholar 

  14. Kaul, A. and Cesare, L., Five dysfunctional telomeres predict onset of senescence in human cells, EMBO Rep., 2012, vol. 13, pp. 52–59. https://doi.org/10.1038/embor.2011.227

    Article  CAS  Google Scholar 

  15. D’Adda di Fagagna, F. and Reaper, P., A DNA damage checkpoint response in telomere-initiated senescence, Nature, 2003, vol. 426, pp. 194–198. https://doi.org/10.1038/nature02118

    Article  CAS  PubMed  Google Scholar 

  16. Ducray, C. and Pommier, J., Telomere dynamics, end-to-end telomerase activation during the human fibroblast immortalization process, Oncogene, 1999, vol. 18, pp. 4211–4223. https://doi.org/10.1038/sj.onc.1202797

    Article  CAS  PubMed  Google Scholar 

  17. Hayflick, L. and Moorhead, P., The serial cultivation of human diploid cell strains, Exp. Cell Res., 1961, vol. 25, pp. 585–621. https://doi.org/10.1016/0014-4827

    Article  CAS  PubMed  Google Scholar 

  18. Bryan, T. and Englezou, A., Telomere elongation in immortal human cells without detectable telomerase activity, EMBO J., 1995, vol. 14, pp. 4240–4248. https://doi.org/10.1002/j.1460-2075.1995.tb00098.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smogorzewska, A. and de Lange, T., Regulation of telomerase by telomeric proteins, Annu. Rev. Biochem., 2004, vol. 73, pp. 177–208. https://doi.org/10.1146/annurev.biochem.73.071403.160049

    Article  CAS  PubMed  Google Scholar 

  20. Jeggo, P., DNA breakage and repair, Adv. Genet., 1998, vol. 38, pp. 185–218. https://doi.org/10.1016/s0065-2660(08)60144-3

    Article  CAS  PubMed  Google Scholar 

  21. Hall, E., Radiobiology for the Radiologist, 6th ed., Int. J. Radiat. Oncol. Biol. Phys., 2006, vol. 66, p. 627. https://doi.org/10.1016/j.ijrobp.2006.06.027

  22. Cucinotta, F., Nikjoo, H., and Goodhead, D., Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles, Radiat. Res., 2000, vol. 153, pp. 459–468.

    Article  CAS  PubMed  Google Scholar 

  23. Baulch, J., Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois?, Int. J. Radiat. Biol., 2019, vol. 95, pp. 516–525. https://doi.org/10.1080/09553002.2018.1549757

    Article  CAS  PubMed  Google Scholar 

  24. Morgan, W., Radiation-induced genomic instability, Health Phys., 2011, vol. 100, pp. 280–281. https://doi.org/10.1097/HP.0b013e3182082f12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Normatova, M., Chromatin structure and DNA damage response, Avicenna Bull., 2017, vol. 19, pp. 120–124. https://doi.org/10.25005/2074-0581-2017-19-1-120-124

    Article  Google Scholar 

  26. Steenken, S. and Jovanovic, S., How easily oxidizable is DNA? One electron reduction potentials of adenosine and guanosine radicals in aqueous solution, J. Am. Chem. Soc., 1997, vol. 119, pp. 617–618.

    Article  CAS  Google Scholar 

  27. Marmiy, N. and Esipov, D., 8-Oxo-2'-deoxyguanosine - biomarker, signal molecule, potential pharmaceutical agent, Sci. J. VolSU. Nat. Sci., 2018, vol. 8, pp. 49–52. https://doi.org/10.15688/jvolsu11.2018.1.9

    Article  Google Scholar 

  28. Burrows, C.J. and Muller, J.G., Oxidative nucleobase modifications leading to strand scission, Chem. Rev., 1998, vol. 98, pp. 1109–1152.

    Article  CAS  PubMed  Google Scholar 

  29. Cooke, M., Evans, M., and Dizdaroglu, M., Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J., 2003, vol. 17, pp. 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  30. Kasai, H., Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis, Mutat. Res., 1997, vol. 387, pp. 147–163.

    Article  CAS  PubMed  Google Scholar 

  31. Coluzzi, E., Colamartino, M., Cozzi, R., et al., Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells, PLoS One, 2014, vol. 9, no. 10, pp. 1–12. https://doi.org/10.1371/journal.pone.0110963

    Article  CAS  Google Scholar 

  32. Harley, C. and Futcher, A., Telomeres shorten during ageing of human fibroblasts, Nature, 1990, vol. 345, pp. 458–460. https://doi.org/10.1038/345458a0

    Article  CAS  PubMed  Google Scholar 

  33. Komarova, N. and Wodarz, D., The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 18, pp. 7017–7021. https://doi.org/10.1073/pnas.0401943101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goytisolo, F. and Samper, E., Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals, J. Exp. Med., 2000, vol. 192, no. 11, pp. 1625–1636. https://doi.org/10.1084/jem.192.11.1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drissi, W. and Wu, J., Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells, Cancer Prev. Res., 2011, vol. 4, no. 12, pp. 1973–1981. https://doi.org/10.1158/1940-6207.CAPR-11-0069

    Article  CAS  Google Scholar 

  36. Reste, J., Zvigule, G., and Zvagule, T., Telomere length in Chernobyl accident recovery workers in the late period after the disaster, J. Radiat. Res., 2014, vol. 55, no. 6, pp. 1089–1100. https://doi.org/10.1093/jrr/rru060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lustig, A. and Shterev, I., Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors, Oncotarget, 2016, vol. 7, no. 26, pp. 38988–38997. https://doi.org/10.18632/oncotarget.8801

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoshida, K. and Misumi, M., Long-term effects of radiation exposure and metabolic status on telomere length of peripheral blood T-cells in atomic bomb survivors, Radiat. Res., 2016, vol. 186, no. 4, pp. 367–376.

    Article  CAS  PubMed  Google Scholar 

  39. Guan, J. and Guan, W., Changes in telomere length distribution in low-dose X-ray-irradiated human umbilical vein endothelial cells, Mol. Cell. Biochem., 2014, vol. 396, pp. 129–135. https://doi.org/10.1007/s11010-014-2149-5

    Article  CAS  PubMed  Google Scholar 

  40. Rossiello, F. and Herbig, U., Irreparable telomeric dna damage and persistent ddr signaling as a shared causative mechanism of cellular senescence and ageing, Curr. Opin. Genet. Dev., 2014, vol. 26, pp. 89–95. https://doi.org/10.1016/j.gde.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, X., Ye, C., Sun, F., et al., Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation, PLoS One, 2016, vol. 11, no. 5, pp. 1–16. https://doi.org/10.1371/journal.pone.0155725

    Article  CAS  Google Scholar 

  42. Bains, S. and Chapman, K., Effects of ionising radiation on telomere length and telomerase activity in cultured human lens epithelium cells, Int. J. Radiat. Biol., 2019, vol. 95, no. 1, pp. 54–63. https://doi.org/10.1080/09553002.2018.1466066

    Article  CAS  PubMed  Google Scholar 

  43. De Vitis, M., Berardinelli, F., and Coluzzi, E., X-rays activate telomeric homologous recombination mediated repair in primary cells, Cells, 2019, vol. 8, no. 7, pp. 708–727. https://doi.org/10.3390/cells8070708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Makeeva.

Ethics declarations

The author declares that she has no conflicts of interest. This article does not contain any studies involving animals or human participants performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeeva, V.S. Ionizing Radiation Effects on Telomeres. Biol Bull Russ Acad Sci 49, 2257–2265 (2022). https://doi.org/10.1134/S1062359022120123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022120123

Keywords:

Navigation