Skip to main content
Log in

The Effectiveness of Glauber’s Salt as an Antidote Therapy for the Incorporation of Radioactive Particles

  • MODIFICATION OF RADIATION EFFECTS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Using a model of artificial radioactive particles, the effectiveness of the use of a saline laxative, Glauber’s salt, as an antidote therapy agent was studied. Internal irradiation of laboratory animals (guinea pigs) and sheep was carried out under laboratory conditions with oral intake of particles simulating the radiation characteristics of young nuclear fission products, at doses that cause medium, severe, and extremely severe forms of radiation ulcerative gastroenterocolitis. During the first four days after radiation exposure, Glauber’s salt was administered to each animal once a day either as 3 mL of 20% aqueous solution (for guinea pigs) or as a 0.5 L of 12% aqueous solution (for sheep). In all animals, the drug demonstrated a statistically significant antidote effect. Glauber’s salt decreased the severity of radiation-induced ulcerative damage to the gastrointestinal tract, enhanced the speed of healing of radiation ulcers, and increased the survival of animals. The approach applied can be used in the search for new antiradiation antidotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Radioactive Particles in the Environment: Sources, Particle Characterization and Analytical Techniques, 1AEA-TECDOC-1663, Vienna: IAEA, 2011, vol. 1663, р. 77.

  2. Kashparov, V.A., Radiological significance of the fuel component of Chernobyl radioactive fallout, Probl. Chernobyl. Zony Otchuzhd., 1992, vol. 9, pp. 5–22.

    Google Scholar 

  3. Salbu, B., Krekling, T., Hove, K., et al., Biological relevance of hot particles ingested by domestic sheep, Int. Symp. Environmental Impact of Radioactive Releases, Vienna: IAEA, 1995, pp. 312–313.

  4. Martin, P., Satou, Y., Griffiths, I., et al., Analysis of external surface irregularities on fukushima-derived fallout particles, Front. Energy Res., 2017, vol. 5, pp. 1–9. https://doi.org/10.3389/fenrg.2017.00025

    Article  Google Scholar 

  5. Kozmin, G.V., Fesenko, S., Snegirev, A.S., et al., Environmental behaviour of radioactive particles: transfer to animals, J. Environ. Radioact., 2020, vol. 213, pp. 106–111. https://doi.org/10.1016/j.jenvrad.2019.106111

    Article  CAS  Google Scholar 

  6. Environmental Transfer of Radionuclides in Japan Following the Accident at the Fukushima Daiichi Nuclear Power Plant, IAEA-TECDOC-1927, Vienna: IAEA, 2020, p. 346.

  7. Shichijo, K., Nariaki Fujimoto, N., Uzbekov, D., et al., Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats—Part 2: pathological effects, Radiat. Environ. Biophys., 2017, vol. 56, no. 1, pp. 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fesenko, S., Kozmin, G., Sanzharova, N., et al., Review of Russian research with radioactive particles: foliar uptake, J. Environ. Radioact., 2019, vol. 204, pp. 21–36.

    Article  CAS  PubMed  Google Scholar 

  9. Annenkov, B.N., Sel’skoe khozyaistvo posle krupnykh radiatsionnykh avarii (Agriculture After Major Radiation Accidents), Rostov-on-Don: ZAO Rostizdat, 2010.

  10. Budarkov, V.A., Grekhova, N.V., Zenkin, A.S., et al., Biological indicators of internal exposure of sheep to radioactive particles, Izv. Mezhdunar. Akad. Agrarn. Obrazov., 2018, vol. 1, no. 42, pp. 148–151.

    Google Scholar 

  11. Salbu, B., Krekling, T., Hove, K., et al., Hot particles in accidental releases from Chernobyl and Windscale, Nucl. Instal., 1994, vol. 119, pp. 125–129. https://doi.org/10.1039/an9941900125

    Article  CAS  Google Scholar 

  12. Budarkov, V.A., Zenkin, A.S., and Kozmin, G.V., Features of the biological action of artificial radioactive particles, Sb. mat. mezhdunarodnoi konferentsii “Radiatsionnye tekhnologii v sel’skom khozyaistve i pishchevoi promyshlennosti: sostoyanie i perspektivy (Proc. Int. Conf. “Radiation Technologies in Agriculture and Food Industry: State and Prospects”), Obninsk, 2018, pp. 61–64.

  13. Aleksakhin, R.M., Problemy radioekologii: evolyutsiya idei. Itogi (Problems of Radioecology: Evolution of Ideas. Results), Moscow: RASKhN, 2006.

  14. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Vienna: IAEA, 2010, p. 194.

  15. Bell, M.C. and Still, E.T., Vulnerability of livestock to fallout beta and gamma irradiation, in Survival of Food Crops and Livestock in the Event of Nuclear War. Conf., Springfield, 1971, pp. 627–629.

  16. Abdullaeva, V.M. et al., Radiatsionnye porazheniya cheloveka (Radiation Damage to Humans), Moscow: IzdAT, 2001.

  17. Grebenyuk, A.N., Legeza, V.I., Milyaev, A.V., et al., Modern strategy of protective and medical measures in radiation accidents, Radiats. Gyg., 2018, vol. 11, no. 4, pp. 80–88. https://doi.org/10.21514/1998-426X-2018-11-4-80-88

    Article  Google Scholar 

  18. Butomo, N.V., Grebenyuk, A.N., Legeza, V.I., et al., Osnovy meditsinskoi radiobiologii (Fundamentals of Medical Radiobiology), St. Petersburg: Foliant, 2004.

  19. Ilyin, L.A., Ushakov, I.B., and Vasin, M.V., Antiradiation means in the system of radiation protection of personnel and the population during radiation accidents, Med. Radiol. Radiats. Bezop., 2012, vol. 57, no. 3, pp. 26–31.

    Google Scholar 

  20. Grebenyuk, A.N., Legeza, V.I., Gladkikh, V.D., et al., Prakticheskoe rukovodstvo po ispol’zovaniyu meditsinskikh sredstv protivoradiatsionnoi zashchity pri chrezvychainykh situatsiyakh i obespecheniyu imi avariinykh mediko-sanitarnykh formirovanii i regional’nykh avariinykh tsentrov (Practical Guidance on the Use of Medical Means of Radiation Protection in Emergency Situations and the Provision of Emergency Medical and Sanitary Units and Regional Emergency Centers with Them), Moscow: Kommentarii, 2015.

  21. Ilyin, L.A., Osnovy zashchity organizma ot vozdeistviya radioaktivnykh veshchestv (Fundamentals of Protecting the Body from Exposure to Radioactive Substances), Moscow: Atomizdat, 1977.

  22. Grebenyuk, A.N. and Gladkikh, V.D., Sovremennoe sostoyanie i perspektivy razrabotki lekarstvennykh sredstv dlya profilaktiki i rannei terapii radiaczionnykh porazheni (Current State and Prospects for the Development of Drugs for the Prevention and Early Treatment of Radiation Injuries), Radiats. Biol., Radioekol., 2019, vol. 59, no. 2, pp. 132–149. https://doi.org/10.1134/S0869803119020085

    Google Scholar 

  23. Krasnyuk, V.I. and Ustyugova, A.A., General principles of antidote therapy for incorporation of radionuclides, Med. Truda Prom. Ekol., 2017, no. 4, pp. 51–56.

  24. Avetisov, G.M., Vorontsov, I.G., Grachev, N.I., et al., Okazanie meditsinskoi pomoshchi porazhennym pri radiatsionnykh avariyakh na dogospital’nom etape: posobie dlya vrachei (Providing Medical Care to Those Injured in Radiation Accidents at the Prehospital Stage: A Manual for Physicians), Moscow: VTsMK Zashchita, 1999.

  25. Krasnyuk, V.I. and Ivannikov, A.T., Principles of antidote therapy for incorporation of radionuclides, Med. Radiol. Radiats. Bezop., 2001, vol. 46, no. 4, pp. 33–39.

    Google Scholar 

  26. Tselishchev, S.P., Artificial radioactive particles for studying the radiation injury of animals on the trail of a ground nuclear explosion in model experiments, in Problemy zhivotnovodstva v zone sleda nazemnogo yadernogo vzryva (Problems of Animal Husbandry in the Zone of a Trail of a Ground Nuclear Explosion), Annenkov, B.N., Ed., 1978, pp. 29–49.

  27. Survival of Food Crops and Livestock in the Event of Nuclear War: Proc. Symposium Brookhaven National Lab., Bensen, D.W. and Sparrow, A.N., Eds., September 15–18, 1970, USA, Oak Ridge, 1971.

  28. Budarkov, V.A., Kirshin, V.A., Panteleev, L.I., et al., Metodicheskie ukazaniya po modelirovaniyu vozdeistviya radiatsionnykh faktorov nazemnogo yadernogo vzryva na sel’skokhozyaistvennykh zhivotnykh v laboratornykh usloviyakh (Guidelines for Modeling the Impact of Radiation Factors of a Ground-Based Nuclear Explosion on Farm Animals in Laboratory Conditions), Moscow: GU MSKh SSSR, 1982.

  29. Evseev, N.D., Kozmin, G.V., Ryabov, V.I., et al., Depth distribution of the absorbed dose during external γ-irradiation of farm animals, Radiobiologiya, 1975, vol. 16, no. 4, pp. 624–627.

    Google Scholar 

  30. Panteleev, L.I., Annenkov, B.N., Sarapultsev, I.A., et al., Teoreticheskie i eksperimental’nye razrabotki dozimetricheskikh modelei sel’skokhozyaistvennykh ob’’ektov pri radioaktivnom zagryaznenii territorii (Theoretical and Experimental Development of Dosimetric Models of Agricultural Facilities in Case of Radioactive Contamination of Territories), Obninsk: VNIIRAE, 1981.

  31. Sodium sulfate (Natrii sulfas; FH), Glauber’s salt, in Veterinarnaya entsiklopediya (Veterinary Encyclopedia), Moscow: Sovetskaya entsiklopediya, 1973, vol. 4.

  32. Chervyakov, D.K., Evdokimov, P.D., and Vishker, A.S., Lekarstvennye veshchestva v veterinarii (Medicinal Substances in Veterinary Medicine), Moscow: Kolos, 1977.

  33. Paquet, F., Bailey, M.R., Leggett, R.W. et al., Occupational Intakes of Radionuclides: Part 3, ICRP Publication 137, 2017, vol. 46, nos. 3/4, p. 491.

  34. Odeichuk, A.N., A generalized criterion for the effectiveness of time series forecasting models in information systems, Bionika Intellekta, 2009, vol. 1, no. 70, pp. 113–119.

    Google Scholar 

  35. Osanov, D.P., Experimental validation of a dosimetric model of the gastrointestinal tract in cattle, Health Phys., 1974, vol. 26, no. 6, pp. 497–503.

    Article  CAS  PubMed  Google Scholar 

  36. Kozmin, G.V., Epimakhov, V.G., and Sanzharova, N.I., Behavior of model particles of local fallout from a ground-based nuclear explosion in the food chain and digestive tract of farm animals, Materialy konferentsii “Radioaktivnost’ after yadernykh vzryvov i avarij: posledstviya i puti preodoleniya” (Proc. Conf. “Radioactivity after Nuclear Explosions and Accidents: Consequences and Ways to Overcome”), Obninsk, 2016, pp. 170–201.

  37. Rowland, M. and Tozer, T.N., Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, Philadelphia: Wolters Kluwer Health/Lippincott William and Wilkins, 2011.

    Google Scholar 

  38. Shapovalov, S., Kozmin, G., Zenkin, A., et al., Radioactive particles: biokinetic transfer parameters in the GIT of monogastric animals, J. Phys.: Conf. Ser., 2020, 1701 012025, pp. 1–6.

  39. Ter-Saakov, A.A., Fedorov, E.A., Priester, B.S., et al., Eksperimental’noe izuchenie zakonomernostei aeral’nogo zagryazneniya sel’skokhozyaistvennykh rastenii polidispersnymi radioaktivnymi chastitsami i ikh postupleniya v ZhKT zhivotnykh pri vypase (Experimental Study of the Patterns of Aerial Contamination of Agricultural Plants with Polydisperse Radioactive Particles and Their Entry into the Gastrointestinal Tract of Animals during Grazing), Obninsk: VNIISKhR, 1975.

  40. Shapovalov, S., Kozmin, G., Budarkov, V., et al., Damage to the digestive tract of monogastric animals by “hot” radioactive particles, J. Phys.: Conf. Ser., 2020, vol. 1701, p. 012025.

    CAS  Google Scholar 

  41. Kozmin, G.V., Epimakhov, V.G., Snegirev, A.S., et al., Transport of radioactive particles in the gastrointestinal tract of sheep, Radiats. Biol. Radioekol., 2018, vol. 58, no. 3, pp. 305–318. https://doi.org/10.7868/S0869803118030104

    Article  Google Scholar 

  42. Budarkov, V.A., Zenkin, A.S., and Shapovalov, S.G., Symptoms and course of radiation ulcerative gastroenterocolitis, Tekhnogennye sistemy i ekologicheskii risk. III Mezhdunarodnaya (XVI regional’naya) nauchnaya konferentsiya. Tezisy dokladov (Technogenic Systems and Environmental Risk. III Int. (XVI Reg.) Sci. Conf., Abstracts of Papers), Obninsk, 2020, pp. 296–298.

  43. Baysogolov, G.D. and Guskova, A.K., Luchevaya bolezn’ cheloveka. Ocherki (Radiation Sickness in Humans. Essays), Moscow: Meditsina, 1971.

  44. Krasnyuk, V.I. and Ustyugova, A.A., General principles of antidote therapy for incorporation of radionuclides, Med. Truda Prom. Ekol., 2017, no. 4, pp. 51–56.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kozmin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. In experimental studies, all animals were treated in strict accordance with the basic ethical and legislative considerations of the general provisions on the use of experimental animals.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozmin, G.V., Shapovalov, S.G., Zenkin, A.S. et al. The Effectiveness of Glauber’s Salt as an Antidote Therapy for the Incorporation of Radioactive Particles. Biol Bull Russ Acad Sci 49, 2043–2054 (2022). https://doi.org/10.1134/S1062359022110127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022110127

Keywords:

Navigation