Skip to main content
Log in

Distribution of Bacteria, Picophytoplankton, and Flagellates in the Mekong Delta

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

For the first time in the Mekong delta (Vietnam), the abundance and biomass of the main components of the planktonic microbial food web, and namely: bacteria, picophytoplankton, and heterotrophic and phototrophic flagellates were determined; the features of their spatial distribution and the species diversity of heterotrophic flagellates were studied. In this productive polluted tropical river ecosystem, heterotrophic bacteria were large in size and their biomass reached high values characteristic of hypertrophic waters. They made the main contribution (73.8%, on average) to the formation of the total biomass of the planktonic microbial community. The contribution of picophytoplankton and heterotrophic and phototrophic flagellates was 20.5, 3.9, and 1.9%, respectively. Twenty-nine species and forms of heterotrophic flagellates belonging to eight large taxa and a group of uncertain taxonomic position were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aladin, N.V. and Plotnikov, I.S., The concept of relativity and multiplicity of barrier salinity zones and forms of existence of the hydrosphere, Tr. Zool. Inst. Ross. Akad. Nauk, 2013, no. 3. pp. 7–21.

    Google Scholar 

  2. Alongi, D.M., Dixon, P., Johnston, D.J., et al., Pelagic processes in extensive shrimp ponds of the Mekong delta, Vietnam, Aquaculture, 1999, vol. 175, pp. 121–141.

    Article  Google Scholar 

  3. Asta, M.P., Wang, Y., Frutschi, M., et al., Microbially mediated release of as from Mekong Delta peat sediments, Environ. Sci. Technol., 2019, vol. 53, no. 17, pp. 10208–10217.

    Article  CAS  PubMed  Google Scholar 

  4. Bell, T. and Kalff, J., The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth, Limnol. Oceanogr., 2001, vol. 46, pp. 1243–1248.

    Article  Google Scholar 

  5. Borsheim, K.Y. and Bratbak, G., Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater, Mar. Ecol.: Proc. Ser., 1987, vol. 36, pp. 171–175.

    Article  Google Scholar 

  6. Callieri, C., Single cells and microcolonies of freshwater picocyanobacteria: a common ecology, J. Limnol., 2010, vol. 69, pp. 257–277.

    Article  Google Scholar 

  7. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 2, pp. 491–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cloern, J.E., Jassby, A.D., Schraga, T.S., et al., Ecosystem variability along the estuarine salinity gradient: examples from long-term study of San Francisco Bay, Limnol. Oceanogr., 2017, vol. 62, no. S1, pp. S272–S291.

    Article  CAS  Google Scholar 

  9. Crump, B.C., Hopkinson, C.S., Sogin, M.L., and Hobbie, J.E., Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time, Appl. Environ. Microbiol., 2004, vol. 70, pp. 1494–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falkowski, P.G., Fenchel, T., and DeLong, E.F., The microbial engines that drive Earth’s biogeochemical cycles, Science, 2008, vol. 320, pp. 1034–1039.

    Article  CAS  PubMed  Google Scholar 

  11. Findlay, S., Pace, M.L., Lints, D., and Howe, K., Bacterial metabolism of organic carbon in the tidal freshwater Hudson Estuary, Mar. Ecol.: Proc. Ser., 1992, vol. 89, pp. 117–153.

    Google Scholar 

  12. Gasol, J.M., del Giorgio, P.A., and Duarte, C.M., Biomass distribution in marine planktonic communities, Limnol. Oceanogr., 1997, vol. 42, no. 6, pp. 1353–1363.

    Article  CAS  Google Scholar 

  13. Hall, J.A., Barrett, D.P., and James, M.R., The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment, J. Plankton Res., 1993, vol. 15, pp. 1075–1086.

    Article  Google Scholar 

  14. Havskum, H. and Riemann, B., Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark, Mar. Ecol.: Proc. Ser., 1996, vol. 137, pp. 251–263.

    Article  Google Scholar 

  15. Huang, B., Lan, W., Cao, Z., et al., Spatial and temporal distribution of nanoflagellates in the northern South China Sea, Hydrobiologia, 2008, vol. 605, pp. 143–157.

    Article  Google Scholar 

  16. Kan, J., Suzuki, M.T., Wang, K., et al., High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay, Appl. Environ. Microbiol., 2007, vol. 73, no. 21, pp. 6776–6789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kopylov, A.I. and Kosolapov, D.B., Microbiological indicators of freshwater eutrophication, in Sbornik materialov Mezhdunar. konf. “Bioindikatsiya v monitoringe presnovodnykh ekosistem” (Proc. Int. Conf. “Bioindication in Monitoring Freshwater Ecosystems”), St. Petersburg: Lema, 2007, pp. 176–181.

  18. Le, H.P., Le, T.K., and Nguyen, T.P.O., Isolation and characterization of carbendazim-degrading bacteria in rice paddy soil in Can Tho, Vietnam, Int. J. Adv. Res., 2017, vol. 5, no. 6, pp. 863–870.

    Article  CAS  Google Scholar 

  19. Li, J., Jiang, X., Jing, Z., et al., Spatial and seasonal distributions of bacterioplankton in the Pearl River Estuary: the combined effects of riverine inputs, temperature, and phytoplankton, Mar. Pollut. Bull., 2017, vol. 125, pp. 199–207.

    Article  CAS  PubMed  Google Scholar 

  20. Maclsaac, E.A. and Stockner, J.G., Enumeration of phototrophic picoplankton by autofluorescence microscopy, in Handbook of Methods in Aquatic Microbial Ecology, Kemp, P.F. et al., Eds., Boca Raton, FL: Lewes Publishers, 1993, pp. 187–197.

    Google Scholar 

  21. McManus, G.B. and Fuhrman, J.A., Mesoscale and seasonal variability of heterotrophic nanoflagellate abundance in an estuarine outflow plume, Mar. Ecol.: Proc. Ser., 1990, vol. 61, pp. 207–213.

    Article  Google Scholar 

  22. Meziti, A., Kormas, K.A., Moustaka-Gouni, M., and Karayanni, H., Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area, Syst. Appl. Microbiol., 2015, vol. 38, pp. 358–367.

    Article  PubMed  Google Scholar 

  23. Mikhailov, V.N. and Arakelyants, A.D., Specific features of hydrological and morphological processes in the mouth area of the Mekong River, Water Resour., 2010, vol. 37, no. 3, pp. 253–267.

    Article  CAS  Google Scholar 

  24. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Kemp, P.F., et al., Eds., Boca Raton, FL: Lewis Publishers, 1993, pp. 303–308.

    Google Scholar 

  25. Nygaard, K. and Tobiesen, A., Bacterivory in algae: a survival strategy during nutrient limitation, Limnol. Oceanogr., 1993, vol. 38, no. 2, pp. 273–279.

    Article  Google Scholar 

  26. Ozaki, H., Co, T.K., Le, A.K., et al., Human factors and tidal influences on water quality of an urban river in Can Tho, a major city of the Mekong Delta, Vietnam, Environ. Monit. Assess., 2014, vol. 186, pp. 845–858.

    Article  CAS  PubMed  Google Scholar 

  27. Pomeroy, L.R., Williams, P.J.leB., Azam, F., and Hobbie, J.I., The microbial loop, Oceanography, 2007, vol. 20, no. 2, pp. 28–33.

    Article  Google Scholar 

  28. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  29. Rychert, K., Kownacka, J., Wielgat-Rychert, M., and Pluto-Pradzynska, A., Protozoan communities in the Vistula River estuary (Baltic Sea), J. Ecol. Prot. Coastline, 2014, vol. 18, pp. 39–53.

    Google Scholar 

  30. Sanders, R.W., Trophic strategies among heterotrophic flagellates, in The Biology of Free-Living Heterotrophic Flagellates, Oxford: Clarendon Press, 1991, pp. 21–38.

    Google Scholar 

  31. Sanders, R.W. and Wickham, S.A., Planktonic protozoa and metazoan: predation, food quality and population control, Mar. Microb. Food Webs, 1993, vol. 7, no. 2, pp. 121–256.

    Google Scholar 

  32. Šantic, D., Šestanovic, S., Šolic, M., et al., Dynamics of picoplankton community from coastal waters to the open sea in the Central Adriatic, Medit. Mar. Sci, 2014, vol. 15, no. 1, pp. 179–188.

    Article  Google Scholar 

  33. Scherwass, A., Fischer, Y., and Arndt, H., Detritus as a potential food source for protozoans: utilization of fine particulate plant detritus by a heterotrophic flagellate, Chilomonas paramecium, and a ciliate, Tetrahymena pyriformis, Aquat. Ecol., 2005, vol. 39, pp. 439–445.

    Article  CAS  Google Scholar 

  34. Selje, N. and Simon, M., Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany, Aquat. Microb. Ecol., 2003, vol. 30, pp. 221–237.

    Article  Google Scholar 

  35. Telesh, I.V. and Khlebovich, V.V., Principal processes within the estuarine salinity gradient: a review, Mar. Pollut. Bull., 2010, vol. 61, pp. 149–155.

    Article  CAS  PubMed  Google Scholar 

  36. Tranvik, L.J., Sherr, E.B., and Sherr, E.F., Uptake and utilization of “colloidal dom” by heterotrophic flagellates in seawater, Mar. Ecol.: Proc. Ser., 1993, vol. 92, pp. 301–309.

    Article  Google Scholar 

  37. Tsai, A.Y., Gong, G.C., Sanders, R.W., et al., The impact of the changjiang river plume extension on the nanoflagellate community in the East China Sea, Estuar. Coast. Shelf Sci., 2010, vol. 89, pp. 21–30.

    Article  Google Scholar 

  38. Tsai, A.Y., Gong, G.C., Sanders, R.W., et al., Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western pacific coastal ecosystem, Aquat. Microb. Ecol., 2011, vol. 63, pp. 9–18.

    Article  Google Scholar 

  39. Unrein, F., Massana, R., Alonso-Saez, L., and Gasol, J.M., Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system, Limnol. Oceanogr., 2007, vol. 52, pp. 456–469.

    Article  Google Scholar 

  40. Vargas, C.A., Contreras, P.Y., and Iriarte, J.L., Relative importance of phototrophic, heterotrophic, and mixotrophic nanoflagellates in the microbial food web of a river-influenced coastal upwelling area, Aquat. Microb. Ecol., 2012, vol. 65, pp. 233–248. https://doi.org/10.3354/ame01551

    Article  Google Scholar 

  41. Verity, P.G., Wassmann, P., Frischer, M.E., et al., Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer, J. Mar. Syst., 2002, vol. 38, pp. 109–123. https://doi.org/10.1016/S0924-7963(02)00172-0

    Article  Google Scholar 

  42. Vørs, N., Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990, Ophelia, 1992, vol. 36, no. 1, pp. 1–109.

    Article  Google Scholar 

  43. Wada, M., Mori, F., Yokouchi, K., et al., Comparison of planktonic microbial abundance and dissolved oxygen consumption between the aquaculture ponds of mudskippers and shrimps in the Mekong Delta, Southern Vietnam, Fish Sci., 2016, vol. 82, pp. 787–797.

    Article  CAS  Google Scholar 

  44. Weisse, T., Dynamics of autotrophic picoplankton in marine and freshwater ecosystems, Adv. Microb. Ecol., 1993, vol. 13, pp. 327–370.

    Article  Google Scholar 

  45. Wilbers, G.-J., Becker, M., Nga, L.T., et al., Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam, Sci. Total Environ., 2014, vol. 485–486, pp. 653–665.

    Article  PubMed  CAS  Google Scholar 

  46. Zhukov, B.F., Atlas Presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Taxonomy)), Rybinsk: Dom pechati, 1993.

Download references

Funding

This study was conducted within the framework of a State Assignment, project no. 121051100102-2. Field studies in the Mekong River Delta were conducted under financial and organizational support of the Joint Russian–Vietnamese Tropical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Kosolapov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosolapov, D.B., Kosolapova, N.G., Tsvetkov, A.I. et al. Distribution of Bacteria, Picophytoplankton, and Flagellates in the Mekong Delta. Biol Bull Russ Acad Sci 49, 214–224 (2022). https://doi.org/10.1134/S1062359022030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022030098

Keywords:

Navigation