Skip to main content
Log in

The Effect of Vanillic Acid on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Wistar Male Rats

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In recent years, the use of stem cells has been widely considered for the reconstruction of lost tissues. Previous studies have demonstrated the effects of phenolic compounds on bone marrow differentiation of stem cells. Vanilla acid is a phenol with several pharmacological effects. This study aimed to investigate the effects of vanillic acid on osteogenic differentiation of bone marrow mesenchymal stem cells in Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Burnett, S.D., Blanchette, A.D., Chiu, W.A., and Rusyn, I., Cardiotoxicity hazard and risk characterization of toxcast chemicals using human induced pluripotent stem cell-derived cardiomyocytes from multiple donors, Chem. Res. Toxicol., 2021, vol. 34, no. 9, pp. 2110–2124. https://doi.org/10.1021/acs.chemrestox.1c00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Caplan, A.I., Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics, Tissue Eng., 2005, vol. 11, nos. 7–8, pp. 1198–1211. https://doi.org/10.1089/ten.2005.11.1198

    Article  CAS  PubMed  Google Scholar 

  3. Chamberlain, G., Fox, J., Ashton, B., and Middleton, J., Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing, Stem Cells, 2007, vol. 25, no. 11, pp. 2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  4. Costa, C.R.R., Amorim, B.R., de Magalhães, P., De Luca Canto, G., Acevedo, A.C., and Guerra, E.N.S., Effects of plants on osteogenic differentiation and mineralization of periodontal ligament cells: a systematic review, Phytother. Res., 2016, vol. 30, no. 4, pp. 519–531. https://doi.org/https://doi.org/10.1002/ptr.5568

  5. Erdem, M.G., Cinkilic, N., Vatan, O., Yilmaz, D., Bagdas, D., and Bilaloglu, R., Genotoxic and anti-genotoxic effects of vanillic acid against mitomycin C-induced genomic damage in human lymphocytes in vitro, Asian Pacif. J. Cancer Prev., 2012, vol. 13, no. 10, pp. 4993–4998. https://doi.org/10.7314/apjcp.2012.13.10.4993

    Article  Google Scholar 

  6. Fakhry, M., Hamade, E., Badran, B., Buchet, R., and Magne, D., Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts, World J. Stem Cells, 2013, vol. 5, no. 4, pp. 136–148. https://doi.org/10.4252/wjsc.v5.i4.136

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fan, J.J., Cao, L.G., Wu, T., Wang, D.X., Jin, D., Jiang, S., Zhang, Z.Y., Bi, L., and Pei, G.X., The dose-effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells, Molecules, 2011, vol. 16, no. 12, pp. 10123–10133. https://doi.org/10.3390/molecules161210123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, H., Zhao, W., Liu, A., Wu, M., Shuai, Y., Li, B., Huang, X., Liu, X., Yang, X., Guo, X., Xuan, K., and Jin, Y., SHED promote angiogenesis in stem cell-mediated dental pulp regeneration, Biochem. Biophys. Res., 2020, vol. 529, no. 4, pp. 1158–1164. https://doi.org/10.1016/j.bbrc.2020.06.151

    Article  CAS  Google Scholar 

  9. Hu, N. and Zou, L., Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells, Ann. Anat., 2022, vol. 239, article 151848. https://doi.org/10.1016/j.aanat.2021.151848

    Article  PubMed  Google Scholar 

  10. Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Watari, A., Kobayashi, M., Tamesada, M., and Yagi, K., Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury, Biol. Pharm. Bull., 2010, vol. 33, no. 6, pp. 983–987. https://doi.org/10.1248/bpb.33.983

    Article  CAS  PubMed  Google Scholar 

  11. Jeyaraman, P. and Naithani, R., Highlights of abstracts on hematopoietic stem cell transplant in annual conference of ISHBT 2018, Indian J. Hematol. Blood Transfus., 2019, vol. 35, no. 1, pp. 12–16. https://doi.org/10.1007/s12288-018-01067-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jo, H.Y., Kim, Y., Park, H.W., Moon, H.E., Bae, S., Kim, J., Kim, D.G., and Paek, S.H., The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells, Exp. Neurobiol., 2015, vol. 24, no. 3, pp. 235–245. https://doi.org/10.5607/en.2015.24.3.235

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, S.-J., Kim, M.-C., Um, J.-Y., and Hong, S.-H., The beneficial effect of vanillic acid on ulcerative colitis, Molecules, 2010, vol. 15, no. 10, pp. 7208–7217. https://www.mdpi.com/1420-3049/15/10/7208

    Article  CAS  Google Scholar 

  14. Kumar, S. and Pandey, A.K., Chemistry and biological activities of flavonoids: an overview, Sci. World J., 2013, article ID 162750. https://doi.org/10.1155/2013/162750

  15. Lako, M., Special series: transplantation of stem cells into the eye, Stem Cells, 2018, vol. 36, no. 10, pp. 1454–1456. https://doi.org/10.1002/stem.2896

    Article  PubMed  Google Scholar 

  16. Morgani, S.M., Canham, M.A., Nichols, J., Sharov, A.A., Migueles, R.P., Ko, M.S., and Brickman, J.M., Totipotent embryonic stem cells arise in ground-state culture conditions, Cell Rep., 2013, vol. 3, no. 6, pp. 1945–1957. https://doi.org/10.1016/j.celrep.2013.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orimo, H., The mechanism of mineralization and the role of alkaline phosphatase in health and disease, J. Nippon Med. Sch., 2010, vol. 77, no. 1, pp. 4–12. https://doi.org/10.1272/jnms.77.4

    Article  CAS  PubMed  Google Scholar 

  18. Pereira, M.J.C., Ramalhete, L., Aleixo, S., Da Silva, C.L., Cabral, J.M.S., Calado, C.R.C., and Fernandes-Platzgummer, A., Impact of the human mesenchymal stem cells donor on conditional medium composition, IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), 2019.

  19. Phinney, D.G. and Prockop, D.J., Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views, Stem Cells, 2007, vol. 25, no. 11, pp. 2896–2902. https://doi.org/10.1634/stemcells.2007-0637

    Article  Google Scholar 

  20. Porter, J.R., Ruckh, T.T., and Popat, K.C., Bone tissue engineering: a review in bone biomimetics and drug delivery strategies, Biotechnol. Prog., 2009, vol. 25, no. 6, pp. 1539–1560. https://doi.org/10.1002/btpr.246

    Article  CAS  PubMed  Google Scholar 

  21. Rafatjou, R., Amiri, I., and Janeshin, A., Effect of Calcium-enriched Mixture (CEM) cement on increasing mineralization in stem cells from the dental pulps of human exfoliated deciduous teeth, Journal of Dental Research, Dental Clinics, Dental Prospects, 2018, vol. 12, no. 4, pp. 233–237. https://doi.org/10.15171/jpid.2018.036

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reddi, A., Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials, Tissue Eng., 2000, vol. 6, no. 4, pp. 351–359. https://doi.org/10.1089/107632700418074

    Article  CAS  PubMed  Google Scholar 

  23. Sindhu, G., Nishanthi, E., and Sharmila, R., Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: a biochemical and molecular study, Environ. Toxicol. Pharmacol., 2015, vol. 39, no. 1, pp. 392–404. https://doi.org/10.1016/j.etap.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  24. Stanely Mainzen Prince, P., Dhanasekar, K., and Rajakumar, S., Vanillic acid prevents altered ion pumps, ions, inhibits Fas-receptor and caspase mediated apoptosis-signaling pathway and cardiomyocyte death in myocardial infarcted rats, Chem. Biol. Interact., 2015, vol. 232, pp. 68–76. https://doi.org/10.1016/j.cbi.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  25. Tai, A., Sawano, T., and Ito, H., Antioxidative properties of vanillic acid esters in multiple antioxidant assays, Biosci. Biotechnol. Biochem., 2012, vol. 76, no. 2, pp. 314–318. https://doi.org/10.1271/bbb.110700

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, T., Onuma, H., Shigihara, T., Kimura, E., Fukuta, Y., Shirasaka, N., Moriyama, T., and Homma, Y., Anti-osteoporotic effects of syringic acid and vanilic acid in the extracts of waste beds after mushroom cultivation, J. Biosci. Bioeng. 2019, vol. 128, no. 5, pp. 622–629. https://doi.org/10.1016/j.jbiosc.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  27. Tarfiei, G., Noruzinia, M., Soleimani, M., Kaviani, S., Mahmoodinia Maymand, M., Farshdousti Hagh, M., and Pujol, P., ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells, Cell J., 2011, vol. 13, no. 1, pp. 11–15. https://pubmed.ncbi.nlm.nih.gov/23671822 https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC3652535/.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Toivonen, S., Malinen, M. M., Küblbeck, J., Petsalo, A., Urtti, A., Honkakoski, P., and Otonkoski, T., Regulation of human pluripotent stem cell-derived hepatic cell phenotype by three-dimensional hydrogel models, Tissue Eng., Part A, 2016, vol. 22, nos. 13–14, pp. 971–984. https://doi.org/10.1089/ten.tea.2016.0127

    Article  CAS  Google Scholar 

  29. Uccelli, A., Moretta, L., and Pistoia, V., Mesenchymal stem cells in health and disease, Nat. Rev. Immunol., 2008, vol. 8, no. 9, pp. 726–736. https://doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Q., Zou, Y., Nowotschin, S., Kim, S.Y., Li, Q.V., Soh, C.L., Su, J., Zhang, C., Shu, W., Xi, Q., Huangfu, D., Hadjantonakis, A.K., and Massagué, J., The p53 family coordinates wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells, Cell Stem Cell, 2017, vol. 20, no. 1, pp. 70–86. https://doi.org/10.1016/j.stem.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L.T., Lee, Y.W., Bai, C.H., Chiang, H.C., Wang, H.H., Yen, B.L., and Yen, M.L., A rapid and highly predictive in vitro screening platform for osteogenic natural compounds using human Runx2 transcriptional activity in mesenchymal stem cells, Front. Cell Dev. Biol., 2021, vol. 8, article 607383. https://doi.org/10.3389/fcell.2020.607383

    Article  PubMed  PubMed Central  Google Scholar 

  32. Winchester, M.S., A frigid hope: a journey into chinese experimental stem cell surgery, Int. J. Feminist Approach. Bioethics, 2021, vol. 14, no. 2, pp. 180–186. https://doi.org/10.3138/IJFAB-14.2.10

    Article  Google Scholar 

  33. Xia, Q., Ling, X., Wang, Z., Shen, T., Chen, M., Mao, D., Ma, X., Ning, J., Zhang, H., Chen, D., Gu, Q., Shen, H., and Yan, J., Flavonoids sophoranone promotes differentiation of C2C12 and extraocular muscle satellite cells, Ophthalm. Res., 2021, vol. 64, no. 2, pp. 337–344. https://doi.org/10.1159/000508251

    Article  CAS  Google Scholar 

  34. Xiao, H.H., Gao, Q.G., Zhang, Y., Wong, K.C., Dai, Y., Yao, X.S., and Wong, M.S., Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway, J. Steroid Biochem. Mol. Biol. Pt B, 2014, vol. 144, pp. 382–391. https://doi.org/10.1016/j.jsbmb.2014.08.002

    Article  CAS  Google Scholar 

  35. Xu, J., Lian, W., Chen, J., Li, W., Li, L., and Huang, Z., Chemical-defined medium supporting the expansion of human mesenchymal stem cells, Stem Cell Res. Ther., 2020, vol. 11, no. 1, article 125. https://doi.org/10.1186/s13287-020-01641-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Q., Yang, W., Liu, J., Liu, H., Lv, Z., Zhang, C., Chen, D., and Jiao, Z., Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship, Oxid. Med. Cell. Longev., 2020, article 4150897. https://doi.org/10.1155/2020/4150897

Download references

ACKNOWLEDGMENTS

We thank the experts from the Center for the Study of Applied Biology of Animal Science in the Islamic Azad University of Mashhad who have been involved in implementing the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Gholami.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Gholami, Tarverdi, A. & Gholami, A. The Effect of Vanillic Acid on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Wistar Male Rats. Biol Bull Russ Acad Sci 49, 117–124 (2022). https://doi.org/10.1134/S1062359022030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022030074

Keywords:

Navigation