Skip to main content
Log in

Physiological Aspects of Lung Impedansometry

  • ANIMAL AND HUMAN PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The results of theoretical studies of the impedance characteristics of the respiratory system and experimental data on the acoustic characteristics of the lungs of rabbits are presented. The measurement results indicate the possibility of using the Helmholtz resonator as an adequate acoustic model of animal and human lungs in the low-frequency range of sound waves. A physiological interpretation of indicators recorded using impedance measurements is given in relation to the diagnosis of the state of the respiratory system of animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alekseenko, S.N. and Drobot, E.V., Profilaktika zabolevanii (Disease Prevention), Moscow: Izd. dom Akad. estestvoznaniya, 2015.

  2. Bachmann, M.C., Morais, C., and Bugedo, G., Electrical impedance tomography in acute respiratory distress syndrome, Crit. Care, 2018, vol. 22, p. 263.

    Article  Google Scholar 

  3. Bogomolov, A.V. and Dragan, S.P., A new approach to the study of impedance characteristics of tympanic membrane, Dokl. Biochem. Biophys., 2015, vol. 464, p. 269.

    Article  CAS  Google Scholar 

  4. Bogomolov, A.V., Dragan, S.P., and Erofeev, G.G., Mathematical model of sound absorption by lungs with acoustic stimulation of the respiratory system, Dokl. Biochem. Biophys, 2019, vol. 487, no. 1, pp. 247–250.

    Article  CAS  Google Scholar 

  5. Chirkova, E.N. and Zavaleeva, S.M., Morphological features of the lungs of a domestic rabbit (Oructolagus), Vestn. Orenburg. Gos. Univ., 2014, vol. 6(167), no. 6, pp. 92–93.

    Google Scholar 

  6. Dragan, S.P. and Bogomolov, A.V., Method of acoustic impedance measurement of the respiratory tract, Med. Tekh., 2015, vol. 300, no. 6, pp. 21–23.

    Google Scholar 

  7. Dragan, S.P. and Bogomolov, A.V., Method of non-invasive diagnostics of the state of the tympanic membrane using probing polyharmonic acoustic signals, Med. Tekh., 2016, vol. 300, no. 6, pp. 21–23.

    Google Scholar 

  8. Dragan, S.P., Bogomolov, A.V., and Kondrat’eva, E.A., Mathematical model of polyharmonic signal processing to study the state of the tympanic membrane, in Int. Conf. Eng. Telecommun. (EnT.), Moscow, 2016, pp. 21–25.

  9. Dragan, S.P., Bogomolov, A.V., Razinkin, S.M., and Kondrat’eva, E.A., A method for acoustic stimulation of muscle tissue in limbs, Biomed. Eng., 2019, vol. 53, no. 1, pp. 36–39.

    Article  Google Scholar 

  10. Dragan, S.P., Bogomolov, A.V., and Kezik, V.I., Analysis of impedance characteristics of the respiratory systems of animals and human, Russ. J. Biomech., 2020, vol. 24, no. 2, pp. 187–195.

    Google Scholar 

  11. Fakhr, B.S., Morais, C.C., Santiago, R.R., Fintelmann, F.J., Kacmarek, R.M., and Berra, L., Bedside monitoring of lung perfusion by electrical impedance tomography in the time of COVID-19, Br. J. Anaesth., 2020, vol. 125, no. 5, pp. 434–436.

    Article  Google Scholar 

  12. Huang, J., Chen, C., Hong, Y., and Cheng, K., A real-time monitoring system for the cardiac and respiratory parameters using bioimpedance technique, in Proc. 26th IEEE Int. Symp. on Computer-Based Med. Systems, Lubbock, Texas, 1998, p. 216.

  13. Iskhakova, A.O., Alekhin, M.D., and Bogomolov, A.V., Time–frequency transforms in analysis of non-stationary quasi-periodic biomedical signal patterns for acoustic anomaly detection, Inform. Control Systems, 2020, vol. 104, no. 1, pp. 15–23.

    Article  Google Scholar 

  14. Ivashin, V.A., Kezik, V.I., and Solov’ev, V.P., Modified method for assessing the state of the lungs in experimental animals under extreme influences, Sarat. Nauchno-Med. Zh., 2017, vol. 13, no. 4, pp. 907912.

  15. Lighthill, J., Volny v zhidkostyakh (Waves in Liquids), Moscow: Mir, 1981.

  16. Li, H., Thoracic impedance measurement for lung function evaluation, in 2017 IEEE Int. Conf. on Imaging Systems and Techniques (IST), Beijing, 2017, pp. 1–5.

  17. Nguyen, N. and Jen, C., Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel, Biosens. Bioelectron., 2018, vol. 121, pp. 10–18.

    Article  CAS  Google Scholar 

  18. Pul’monologiya: natsional’noe rukovodstvo (Pulmonology: National Guide) Chuchalin, A.G, Eds., Moscow: GEOTAR-Media, 2018.

  19. Roubik, K., Sobota, V., and Laviola, M., Selection of the baseline frame for evaluation of electrical impedance tomography of the lungs, in Second Int. Conf. on Math. and Comp. in Sci. and in Industry (MCSI), Sliema, 2015, pp. 293–297.

  20. Rueda, A. and Yufera, A., A CMOS bio-impedance measurement system, in 16th Int. Symp. on Design and Diagnostics of Electronic Circuits and Systems (DDECS), Liberec, Czech Republic, 2009, pp. 252–257.

  21. Rzhevkin, S.N., Kurs lektsii po teorii zvuka (A Course of Lectures on the Theory of Sound), Moscow: Mosk. Gos. Univ., 1960.

  22. Santos, S.A., Czaplik, M., Orschulik, J., Hochhausen, N., and Leonhardt, S., Lung pathologies analyzed with multi-frequency electrical impedance tomography: pilot animal study, Respirat. Physiol. Neurobiol., 2018, vol. 254, pp. 1–9.

    Article  Google Scholar 

  23. Savushkina, O.I., Chernyak, A.V., Zaitsev, A.A., and Kulagina, I.Ts., Informative value of pulse oscillometry in revealing ventilation disorders in patients with newly diagnosed respiratory sarcoidosis, Pul’monologiya, 2017, vol. 27, no. 4, pp. 439–446.

    Article  Google Scholar 

  24. Savushkina, O.I., Chernyak, A.V., Kryukov, E.V., Zaitsev, A.A., Naumenko, Zh.K., and Tatarskii, A.R., Pulse oscillometry in the diagnosis of moderate airway obstruction, Klin. Prakt., 2018, vol. 9, no. 4, pp. 33–39.

    Google Scholar 

  25. Soldatov, S.K., Zinkin, V.N., Bogomolov, A.V., Dragan, S.P., and Kukushkin, Yu.A., Fundamental’nye i prikladnye aspekty aviatsionnoi meditsinskoi akustiki (Fundamental and Applied Aspects of Aviation Medical Acoustics), Moscow: Fizmatlit, 2019.

  26. Tkachenko, L.V., Topographic anatomy of the primary bronchi and hilum and root of the lungs of an adult rabbit in normal conditions (morphological studies, UMRI), Vestn. Altai. Gos. Agrarn. Univ., 2011, vol. 12 (86), pp. 72–75.

  27. Zavaleeva, S.M., Chirkova, E.N., Sadykova, N.N., and Godina, O.V., Age-related changes in the lungs of a domestic rabbit in postnatal ontogenesis, Morfologiya, 2019, vol. 155, no. 2, p. 114.

    Google Scholar 

  28. Zhdanko, I.M., Zinkin, V.N., Soldatov, S.K., Bogomolov, A.V., and Sheshegov, P.M., Fundamental and applied aspects of preventing the adverse effects of aviation noise, Hum. Physiol., 2016, vol. 42, no. 7, pp. 705–714.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the President of the Russian Federation for State Support of Leading Scientific Schools of the Russian Federation, project no. NSh-2553.2020.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dragan.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragan, S.P., Kezik, V.I. & Bogomolov, A.V. Physiological Aspects of Lung Impedansometry. Biol Bull Russ Acad Sci 49, 677–685 (2022). https://doi.org/10.1134/S106235902201006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902201006X

Keywords:

Navigation