Skip to main content
Log in

What Have We Learned about the Biological Effects of Radiation from the 35 Years of Analysis of the Consequences of the Chernobyl NPP Accident?

  • STUDY OF THE CONSEQUENCES OF THE ACCIDENT AT THE CHERNOBYL NUCLEAR POWER PLANT: 35th ANNIVERSARY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The results of long-term studies of the radiobiological effects in plants and animals inhabiting territories contaminated as a result of the Chernobyl accident are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience: Report of the UN Chernobyl Forum Expert Group “Environment,” Vienna: Int. At. Energy Agency, 2006.

  2. Krupnye radiatsionnye avarii: posledstviya i zashchitnye mery (Large Radiation Accidents: Consequences and Protective Measures), Il’in, L.A. and Gubanov, V.A., Eds., Moscow: IzdAT, 2001.

  3. Geras’kin, S.A., Fesenko, S.V., and Alexakhin, R.M., Effects of non-human species irradiation after the Chernobyl NPP accident, Environ. Int., 2008, vol. 34, pp. 880–897.

    Article  PubMed  Google Scholar 

  4. Smirnov, E.G. and Suvorova, L.I., Assessment and forecast of the biological effect of radioactive contamination on vegetation in the Chernobyl accident zone, Tr. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 1996. no. 145, pp. 27–37.

  5. Suvorova, L.I., Spirin, D.A., Martyushov, V.Z., et al., Assessment of the ecological and biological consequences of radioactive contamination of biogeocenoses, in Radiatsionnye aspekty Chernobyl’skoi avarii (Radiation Aspects of the Chernobyl Accident), St. Petersburg: Gidrometeoizdat, 1993, vol. 2, pp. 321–325.

  6. Grodzinskii, D.M. and Gudkov, I.N., Radiation damage of plants in the impact zone of the Chernobyl accident, Radiats. Biol., Radioekol., 2006, vol. 46, pp. 189–199.

    CAS  Google Scholar 

  7. Dmitriev, A.P., Grodzinskii, D.M., Gushcha, N.I., and Kryzhanovskaya, M.S., Effect of chronic irradiation on plant resistance to biotic stress in 30-km Chernobyl nuclear power plant exclusion zone, Russ. J. Plant Physiol., 2011, vol. 58, no. 6, pp. 1062–1068.

    Article  CAS  Google Scholar 

  8. Gornaga, N.G., 30-km exclusion zone of the Chernobyl Nuclear Power Plant as a source of harmful organisms for agro-industrial complex, Vestn. S-kh. Nauki, 2001, vol. 4, pp. 51–53.

    Google Scholar 

  9. Zyablitskaya E.Ya., Spirin E.V., Sanzharova, N.I. and Aleksakhin, R.M., Genetic and biological effects of chronic irradiation of winter rye crops by radioactive precipitations after the accident, Radiobiologiya, 1990, vol. 30, no. 3, pp. 291–295.

    Google Scholar 

  10. Geras’kin, S.A., Dikarev, V.G., Zyablitskaya, Ye.Ya., et al., Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops, J. Environ. Radioact., 2003, vol. 66, pp. 155–169.

    Article  Google Scholar 

  11. Igonina, E.V., Fedotov, I.S., Korotkevich, A.Yu., and Rubanovich, A.V., Morphological anomalies in the descendants of irradiated Scots pines (Pinus sylvestris L.) from Chernobyl populations, Radiats. Biol., Radioekol., 2012, vol. 52, no. 1, pp. 90–102.

    CAS  Google Scholar 

  12. Ostapenko, E.K., Vilenskii, E.R., Naumenko, V.D., et al., Genetic anomalies in pollen cells of Waxy barley in conditions of radioactive contamination after the Chernobyl accident, Ontogenez, 1993, vol. 24, no. 5, pp. 11–19.

    CAS  PubMed  Google Scholar 

  13. Boubriak, I., Akimkina, T., Polischuk, V., et al., Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors, Cytol. Genet., 2016, vol. 50, no. 6, pp. 381–399.

    Article  Google Scholar 

  14. Kovalchuk, O., Dubrova, Y.E., Arkhipov, A., et al., Wheat mutation rate after Chernobyl, Nature, 2000, vol. 407, pp. 583–584.

    Article  CAS  PubMed  Google Scholar 

  15. Aleksakhin, R.M., Sarapul’tsev, I.A., Spirin, E.V., and Udalov, D.B., Dose loads on farming animals during the Chernobyl accident and the effect of their evacuation on absorbed doses, Dokl. Ross. Akad. Nauk, 1992, vol. 323, no. 3, pp. 576–579.

    CAS  Google Scholar 

  16. Isamov, N.N., Budarkov, V.A., and Surgucheva, L.M., Diagnostics and specific prevention of infectious diseases of farming animals in the territory contaminated with radioactive substances, Vet. Patol., 2002, no. 3, pp. 134–151.

  17. Astasheva, N.P., Lazarev, N.M., Khramtsova, L.K., et al., Effect of radiation exposure during the Chernobyl accident on the clinical and physiological status of farming animals, in Problemy sel’skokozyaistvennoi radiologii (Agricultural Radiology), Kyiv: UIAR, 1991, pp. 176–180.

  18. Shevchenko, A.S., Vakulenko, A.D., and Isamov, N.N., Increase of prostaglandin activation of El adenylate cyclase in blood cells of animals in the region affected by the Chernobyl accident, Dokl. Vses. Akad. S-kh. Nauk im. V.I. Lenina, 1990, no. 11, pp. 55–58.

  19. Budarkov, V.A., Zenkin, A.S., Arkhipov, N.P., et al., The effect of iodine-131 on sheep depending on the content of stable iodine in their diet, Radiobiologiya, 1992, vol. 32, no. 3, pp. 451–458.

    CAS  Google Scholar 

  20. Krivolutskii, D.A., Pokarzhevskii, A.D., Usachev, V.L., et al., Influence of radioactive pollution of the environment on the soil fauna in the area of the Chernobyl accident, Ekologiya, 1990, no. 6, pp. 32–42.

  21. Krivolutskii, D.A., Biodiversity dynamics of ecosystems affected by radioactive contamination, Dokl. Ross. Akad. Nauk, 1996, vol. 347, no. 4, pp. 567–569.

    CAS  Google Scholar 

  22. de Boulois, H.D., Joner, E.J., Leyval, C., et al., Role and influence of mycorrhizal fungi on radiocesium accumulation by plants, J. Environ. Radioact., 2008, vol. 99, pp. 785–800.

    Article  PubMed  Google Scholar 

  23. Dubchak, S., Role of mycorrhizal fungi in caesium uptake by plants, in Impact of Cesium on Plants and the Environment, Gupta, D. and Walther, C., Eds., Cham: Springer-Verlag, 2017.

    Google Scholar 

  24. Zhdanova, N.N., Zakharchenko, V.A., Vember, V.V., and Nakonechnaya, L.T., Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor, Mycol. Res., 2000, vol. 104, pp. 1421–1426.

    Article  Google Scholar 

  25. Zhdanova, N.N., Zakharchenko, V.A., and Haselwandter, K., Radionuclides and fungal communities, in The Fungal Community: Its Organization and Role in the Ecosystem, Dighton, J., White, J.F., and Oudemans, P., Eds., Boca Raton, FL: CRC Press, 2005, pp. 759–768.

    Google Scholar 

  26. Adamovich, I.Yu. and Samoshkin, E.N., Scots pine mycorrhiza at different levels of radioactive contamination, Lesn. Zh., 2009, no. 3, pp. 41–47.

  27. Samoshkin, E.N. and Adamovich, I.Yu., Specific structure and ratio of subtypes of mycorrhiza of Picea abies L. affected by chronic contamination with radionuclides in Bryansk oblast, Lesn. Zh., 2011, no. 2, pp. 81–87.

  28. Hoyos-Hernandez, C., Courbert, C., Simonucci, C., et al., Community structure and functional genes in radionuclide contaminated soils in Chernobyl and Fukushima, FEMS Microbiol. Lett., 2019, vol. 366, p. fnz180.

    Article  CAS  PubMed  Google Scholar 

  29. Tikhomirov, F.A. and Shcheglov, A.I., Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones, Sci. Total Environ., 1994, vol. 157, pp. 45–57.

    Article  CAS  PubMed  Google Scholar 

  30. Kozubov, G.M. and Taskaev, A.I., Radiobiologicheskie i radioekologicheskie issledovaniya drevesnykh rastenii (Radiobiological and Radioecological Studies of Wood Plants), St. Petersburg: Nauka, 1994.

  31. Fedotov, I.S., Kal’chenko, V.A., Igonina, E.V., and Rubanovich, A.V., Radiation-genetic consequences of exposure of the Scots pine population in the Chernobyl accident zone, Radiats. Biol., Radioekol., 2006, vol. 46, no. 3, pp. 283–288.

    Google Scholar 

  32. Sokolov, V.E., Rjabov, I.N., Ryabtsev, I.A., et al., Effect of radioactive contamination on the flora and fauna in the vicinity of Chernobyl’ nuclear power plant, Sov. Sci. Rev., F, 1994, vol. 8, pp. 1–124.

  33. Khromova, L.V., Romanovskii, M.G., and Dukharev, V.A., Partial sterility of pine in 1986 and 1987 in the area of the Chernobyl accident, Radiobiologiya, 1990, vol. 30, no. 4, pp. 450–457.

    CAS  Google Scholar 

  34. Sarapul’tsev, B.I. and Geras’kin, S.A., Geneticheskie osnovy radiorezistentnosti i evolyutsiya (Genetic Principles of Radioresistance and Evolution), Moscow: Energoatomizdat, 1993.

  35. Abaturov, Yu.D., Gol’tsova, N.I., Rostova, N.S., et al., The features of radiation damage of pine in the area of the Chernobyl accident, Ekologiya, 1991, no. 5, pp. 28–33.

  36. Sidorov, V.P., Cytogenetic effect in the cells of Scots pine needles during irradiation as a result of the Chernobyl accident, Radiats. Biol., Radioekol., 1994, vol. 34, no. 6, pp. 847–851.

    CAS  Google Scholar 

  37. Kozubov, G.M. and Taskaev, A.I., Specific morphogenesis and growth in conifers in the area of the Chernobyl accident, Radiats. Biol., Radioekol., 2007, vol. 47, no. 2, pp. 204–223.

    CAS  Google Scholar 

  38. Sorochinskii, B.V., Molecular-biological anomalies among gymnosperms induced by chronic irradiation in the Chernobyl exclusion zone: emphasis on the possible role of the cytoskeleton, Tsitol. Genet., 2003, vol. 37, no. 2, pp. 49–55.

    CAS  PubMed  Google Scholar 

  39. Møller, A.P., Developmental instability of plants and radiation from Chernobyl, Oikos, 1998, vol. 81, pp. 444–448.

    Article  Google Scholar 

  40. Makarenko, E.S., Oudalova, A.A., and Geras’kin, S.A., Study of needle morphometric indices in Scots pine in the remote period after the Chernobyl accident, Radioprotection, 2016, vol. 51, pp. 19–23.

    Article  CAS  Google Scholar 

  41. Kashparova, E., Levchuk, S., Morozova, V., and Kashparov, V., A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone, J. Environ. Radioact., 2020, vol. 211, art. ID 105731.

    Article  CAS  PubMed  Google Scholar 

  42. Kal’chenko, V.A., Shevchenko, V.A., Rubanovich, A.V., et al., Genetic effect in populations of Pinus sylvestis L. from the East Ural radioactive trace, the Chernobyl accident control zone, and in the area of nuclear tests at the Semipalatinsk test site, Radiats. Biol., Radioekol., 1995, vol. 35, no. 5, pp. 702–707.

    Google Scholar 

  43. Kal’chenko, V.A. and Fedotov, I.S., Genetic effects of acute and chronic ionizing irradiation on Pinus sylvestris L., inhabiting the Chernobyl meltdown area, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 341–350.

    Article  Google Scholar 

  44. Shevchenko, V.A., Abramov, V.I., Kal’chenko, V.A., et al., Genetic consequences of radioactive contamination of the environment for plant populations related with the Chernobyl accident, Radiats. Biol., Radioekol., 1996, vol. 36, no. 4, pp. 531–545.

    CAS  Google Scholar 

  45. Geras’kin, S., Volkova, P., Vasiliyev, D., Dikareva, N., et al., Scots pine as a promising indicator organism for biomonitoring of the polluted environment: a case study on chronically irradiated populations, Mutat. Res., 2019, vol. 842, pp. 3–13.

    Article  Google Scholar 

  46. Geras’kin, S.A. and Volkova, P.Yu., Genetic diversity in Scots pine populations along a radiation exposure gradient, Sci. Total Environ., 2014, vol. 496, pp. 317–327.

    Article  PubMed  Google Scholar 

  47. Volkova, P.Yu., Geras’kin, S.A., and Kazakova, E.A., Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations, Sci. Rep., 2017, vol. 7, art. ID 43009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geras’kin, S., Oudalova, A., Kuzmenkov, A., and Vasiliyev, D., Chronic radiation exposure modifies temporal dynamics of cytogenetic but not reproductive indicators in Scots pine populations, Environ. Pollut., 2018, vol. 239, pp. 399–407.

    Article  PubMed  Google Scholar 

  49. Geras’kin, S., Vasiliyev, S., Makarenko, E., et al., Influence of long-term chronic exposure and weather conditions on Scots pine populations, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 11240–11253.

    Article  Google Scholar 

  50. Kovalchuk, O., Burke, P., Arkhipov, A., et al., Genome hypermethylation in Pinus sylvestris of Chernobyl—a mechanism for radiation adaptation? Mutat. Res., 2003, vol. 529, pp. 13–20.

    Article  CAS  PubMed  Google Scholar 

  51. Volkova, P.Yu., Geras’kin, S.A., Horemans, N., et al., Chronic radiation exposure as an ecological factor: hypermethylation and genetic differentiation in irradiated Scots pine populations, Environ. Pollut., 2018, vol. 232, pp. 105–112.

    Article  CAS  PubMed  Google Scholar 

  52. Duarte, G.T., Volkova, P.Yu., and Geras’kin, S.A., The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone, Environ. Pollut., 2019, vol. 250, pp. 618–626.

    Article  CAS  PubMed  Google Scholar 

  53. Shershunova, V.I. and Zainullin, V.G., Monitoring of natural populations of Dactylis glomerata L. in the Chernobyl accident zone, Radiats. Biol., Radioekol., 1995, vol. 35, no. 5, pp. 690–695.

    CAS  Google Scholar 

  54. Shevchenko, V.A., Kal’chenko, V.A., Abramov, V.I., et al., Genetic effects in plant populations growing in the Kyshtym and Chernobyl accident zones, Radiats. Biol., Radioekol., 1999, vol. 39, no. 1, pp. 162–176.

    CAS  Google Scholar 

  55. Prister, B.S., Problemy sel’skokhozyaistvennoi radioekologii i radiobiologii pri zagryaznenii okruzhayushchei sredy molodoi smes’yu produktov yadernogo deleniya (Problems of Agricultural Radioecology and Radiobiology during Environmental Pollution with a Young Mixture of Nuclear Fission Products), Chernobyl: Inst. Probl. Bezop. AES, 2008.

  56. Mikheev, A.M., Heterogeneity of 137Cs and 90Sr distribution and dose-dependent loads on critical tissues of the main root of seedlings, Radiats. Biol., Radioekol., 1999, vol. 39, no. 6, pp. 663–666.

    CAS  Google Scholar 

  57. Popova, O.N., Taskaev, A.I., and Frolova, N.P., Geneticheskaya stabil’nost’ i izmenchivost’ semyan v populyatsiyakh travyanistykh fitotsenozov v raione avarii na Chernobyl’skoi AES (Genetic Stability and Variability of Seeds in Populations of Grass Phytocenoses in the Area of the Chernobyl Accident), St. Petersburg: Nauka, 1992.

  58. Morozova, V., Kashparova, E., Levchuk, S., et al., The progeny of Chernobyl Arabidopsis thaliana plants does not exhibit changes in morphometric parameters and cellular antioxidant defense system of shoots, J. Environ. Radioact., 2020, vol. 211, art. ID 106076.

    Article  CAS  PubMed  Google Scholar 

  59. Shevchenko, V.V. and Grinikh, L.I., Cytogenetic effects in the populations of Crepis tectorum growing in Bryansk oblast observed in the 7th year after the Chernobyl accident, Radiats. Biol., Radioekol., 1995, vol. 35, no. 5, pp. 720–725.

    CAS  Google Scholar 

  60. Shevchenko, V.V., Grinikh, L.I., and Abramov, V.I., Cytogenetic effects in natural populations of Crepis tectorum L. growing in the region of the East-Ural radioactive trace, Radiats. Biol., Radioekol., 1998, vol. 38, no. 3, pp. 330–336.

    CAS  Google Scholar 

  61. Pernis, M., Skultety, L., Shevchenko, V., et al., Soybean recovery from stress imposed by multigenerational growth in contaminated Chernobyl environment, J. Plant. Physiol., 2020, vol. 251, art. ID 153219.

    Article  CAS  PubMed  Google Scholar 

  62. Volkova, P.Yu., Duarte, G.T., Kazakova, E.A., et al., Radiosensitivity of herbaceous plants to chronic radiation exposure: field study in the Chernobyl exclusion zone, Sci. Total Environ., 2021, vol. 777, art. ID 146206.

    Article  CAS  Google Scholar 

  63. Hinton, T.G., Alexakhin, R., Balonov, M., et al., Radiation-induced effects on plants and animals: findings of the United Nations Chernobyl Forum, Health Phys., 2007, vol. 93, pp. 427–440.

    Article  CAS  PubMed  Google Scholar 

  64. Taskaev, A.I. and Testov B.V., The abundance and reproduction of mouse-like rodents in the Chernobyl accident zone, in Bioindikatsiya radioaktivnogo zagryazneniya (Bioindication of Radioactive Contamination), Moscow: Nauka, 1999, pp. 200–205.

  65. Baker, R.J., Hamilton, M.J., Bussche, R.A., et al., Small mammals from the most radioactive sites near the Chernobyl nuclear power plant, J. Mamm., 1996, vol. 77, pp. 155–170.

    Article  Google Scholar 

  66. Materii, L.D., Dynamics of morphological features of the damages and recovery in the hematopoietic system of root voles from the 30-km zone of the Chernobyl accident, Tr. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 1996, vol. 1, no. 145, pp. 12–40.

    Google Scholar 

  67. Ermakova, O.V., Compensatory-recovery processes in the organs of the endocrine system of voles affected by radioactive contamination of the environment, Tr. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 1996, vol. 1, no. 145, pp. 58–76.

    Google Scholar 

  68. Chesser, R.K., Sugg, D.W., Lomakin, M.D., et al., Concentrations and dose rate estimates of 134,137Cs and 90Sr in small mammals at Chernobyl, Ukraine, Environ. Toxicol. Chem., 2000, vol. 19, pp. 305–312.

    CAS  Google Scholar 

  69. Materii, L.D. and Goncharov, M.I., Mobilization of compensatory-recovery processes in the damaged liver of root voles from the 30-kilometer zone of the Chernobyl NPP, Tr. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 1996, vol. 1, no. 145, pp. 41–57.

    Google Scholar 

  70. Shishkina, L.N., Materii, L.D., Kudyasheva, A.G., et al., Structural and functional disorders in the liver of wild rodents from the areas of the Chernobyl accident, Radiobiologiya, 1992, vol. 32, no. 1, pp. 19–29.

    CAS  Google Scholar 

  71. Kudyasheva, A.G., Shishkina, L.N., Zagorskaya, N.G., et al., Composition of liver phospholipids of root voles living in different radioecological conditions, Radiats. Biol., Radioekol., 2000, vol. 40, no. 3, pp. 327–333.

    CAS  Google Scholar 

  72. Zolotareva, N.N. and Ryabtsev, I.A., Variability of the biochemical status of populations of bank voles affected by chronic ionizing radiation depending on the time of their habitation in territories contaminated with radionuclides, Radiats. Biol., Radioekol., 1997, vol. 37, no. 3, pp. 438–444.

    CAS  Google Scholar 

  73. Kivisaari, K., Boratynski, Z., Lavrinienko, A., et al., The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone, Int. J. Radiat. Biol., 2020, vol. 96, pp. 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  74. Goncharova, R.I. and Ryabokon’, N.I., Biological effects in natural populations of small rodents in radiation-contaminated areas. Dynamics of the frequency of chromosome aberrations in a series of generations of the European bank vole, Radiats. Biol., Radioekol., 1998, vol. 38, no. 5, pp. 746–753.

    CAS  Google Scholar 

  75. Hancock, S., Vo, N.T.K., Goncharova, R.I., et al., One-decade-spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the Chernobyl nuclear disaster, Environ. Res., 2020, vol. 180, art. ID 108816.

    Article  CAS  PubMed  Google Scholar 

  76. Ryabokon’, N.I., Biological effects in natural populations of small rodents in areas contaminated with radionuclides: frequency of polyploid bone marrow cells in bank voles in different years after the Chernobyl disaster, Radiats. Biol., Radioekol., 1999, vol. 39, no. 6, pp. 613–618.

    Google Scholar 

  77. Smolich, I.I. and Ryabokon’, N.I., Frequency of micronuclei in somatic cells of bank voles (Clethrionomys glareolus Schreb.) from chronically irradiated populations, Vesti Nats. Akad. Nauk Bel., 1997, no. 4, pp. 43–47.

  78. Rogers, B.E. and Baker, R.J., Frequencies of micronuclei in bank voles from zones of high radiation at Chernobyl, Ukraine, Environ. Toxicol. Chem., 2000, vol. 19, pp. 1644–1648.

    Article  Google Scholar 

  79. Chekhovich, A.V., Sycheva, L.P., Bakhitova, L.M., and Pomerantseva, M.D., Frequency of micronuclei in somatic cells of mouse-like rodents from the 30-km zone of the Chernobyl NPP, Radiats. Biol., Radioekol., 1994, vol. 34, no. 6, pp. 858–864.

    CAS  Google Scholar 

  80. Pomerantseva, M.D., Ramaiya L.K., and Chekhovich, A.V., Genetic disorders in house mice after the Chernobyl accident, Radiats. Biol., Radioekol., 1997, vol. 37, no. 4, pp. 645–648.

    CAS  Google Scholar 

  81. Zainullin, V.G., Rakin, A.O., and Taskaev, A.I., Dynamics of the frequency of cytogenetic disturbances in micropopulations of rodents living in the area of the Chernobyl accident, Radiats. Biol., Radioekol., 1994, vol. 34, no. 6, pp. 852–857.

    CAS  Google Scholar 

  82. Rakin, A.O. and Bashlykova, L.A., Results of cytogenetic monitoring of mouse-like rodents from the Chernobyl accident area, Tr. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 1996, vol. 1, no. 145, pp. 113–122.

    Google Scholar 

  83. Kostenko, S.A., Buntova, E.G., and Glazko, T.T., Species-specific destabilization of the karyotype in conditions of radionuclide contamination (Chernobyl NPP) in voles Microtus arvalis, Cletrionomys glareolus, and Microtus oeconomus, Tsitol. Genet., 2001, vol. 35, pp. 11–18.

    CAS  PubMed  Google Scholar 

  84. Smith, J.T., Is Chernobyl radiation really causing negative individual and population-level effects on barn swallows? Biol. Lett., 2008, vol. 4, pp. 63–64.

    Article  CAS  PubMed  Google Scholar 

  85. Garnier-Laplace, J., Geras’kin, S., Della-Vedova, C., et al., Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates, J. Environ. Radioact., 2013, vol. 121, pp. 12–21.

    Article  CAS  PubMed  Google Scholar 

  86. Camplani, A., Saino, N., and Moller, A., Carotenoids, sexual signals and immune function in barn swallows from Chernobyl, Proc. R. Soc. B, 1999, vol. 266, pp. 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Møller, A.P., Bonisoli-Alquati, A., and Mousseau, T.A., High frequency of albinism and tumors in free-living birds around Chernobyl, Mutat. Res., 2013, vol. 757, pp. 52–59.

    Article  PubMed  Google Scholar 

  88. Møller, A.P., Bonisoli-Alquati, A., Mousseau, T.A., and Rudolfsen, G., Aspermy, sperm quality and radiation in Chernobyl birds, PLoS One, 2014, vol. 9, p. e100296.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bonisoli-Alquati, A., Voris, A., Mousseau, T.A., et al., DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the comet assay, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2010, vol. 151, pp. 271–277.

    Google Scholar 

  90. Bonisoli-Alquati, A., Mousseau, T.A., Møller, A.P., et al., Increased oxidative stress in barn swallows from the Chernobyl region, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2010, vol. 155, pp. 205–210.

    Article  Google Scholar 

  91. Ryabov, I.N., Assessment of the impact of radioactive contamination on aquatic organisms of 30 km of the Chernobyl accident control zone, Radiobiologiya, 1992, vol. 32, no. 5, pp. 662–667.

    Google Scholar 

  92. Pechkurenkov, V.L., Impact of the accident at the Chernobyl nuclear power plant in 1986 on the fish population of the cooling reservoir, Radiobiologiya, 1991, vol. 31, no. 5, pp. 704–708.

    CAS  Google Scholar 

  93. Polikarpov, G.G. and Tsytsugina, V.G., Hydrobionts in the impact zone of the accident in Kyshtym and Chernobyl, Radiats. Biol., Radioekol., 1995, vol. 35, no. 4, pp. 549–536.

    Google Scholar 

  94. Belova, N.V., Verigin, B.V., Emel’yanov, N.G., et al., Radiobiological analysis of silver carp Hypophthalmichthys molitrix in the cooling reservoir of the Chernobyl nuclear power plant in the post-accident period. I. State of the reproductive system of fishes after the accident, Vopr. Ikhtiol., 1993, vol. 33, no. 6, pp. 814–828.

    Google Scholar 

  95. Makeeva, A.P., Emel’yanova, N.G., Belova, N.V., and Ryabov, I.N., Radiobiological analysis of silver carp Hypophthalmichthys molitrix in the cooling reservoir of the Chernobyl nuclear power plant in the post-accident period. II. Development of the reproductive system in the first-generation offsprings, Vopr. Ikhtiol., 1994, vol. 34, no. 5, pp. 681–696.

    Google Scholar 

  96. Lerebours, A., Gudkov, D., Nagorskaya, L., et al., Impact of environmental radiation on the health and reproductive status of fish from Chernobyl, Environ. Sci. Technol., 2018, vol. 52, pp. 9442–9450.

    Article  CAS  PubMed  Google Scholar 

  97. Fetisov, A.N., Rubanovich, A.V., Slipchenko, T.S., and Shevchenko, V.A., The structure of Dreissena polymorpha populations from basins adjacent to the Chernobyl atomic power station, Sci. Total Environ., 1992, vol. 112, pp. 115–124.

    Article  CAS  PubMed  Google Scholar 

  98. Fuller, N., Smith, J.T., Nagorskaya, L.L., et al., Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30 years on? Sci. Total Environ., 2017, vol. 576, pp. 242–250.

    Article  CAS  PubMed  Google Scholar 

  99. Fuller, N., Ford, A.T., Nagorskaya, L.L., et al., Reproduction in the freshwater crustacean Asellus aquaticus along a gradient of radionuclide contamination at Chernobyl, Sci. Total Environ., 2018, vols. 628–629, pp. 11–17.

    Article  PubMed  Google Scholar 

  100. Eliseeva, K.G., Voitovich, A.M., Ploskaya, M.V., and Smal’, S.E., Genetic monitoring of populations of brown frogs from radionuclide-contaminated regions of the Republic of Belarus, Radiats. Biol., Radioekol., 1994, vol. 34, no. 6, pp. 838–846.

    CAS  Google Scholar 

  101. Eliseeva, K.G., Kartel’, N.A., and Voitovich, A.M., Chromosomal aberrations in various tissues of mouse-like rodents and amphibians from radionuclide-contaminated regions of Belarus, Tsitol. Genet., 1996, vol. 30, no. 4, pp. 20–25.

    CAS  PubMed  Google Scholar 

  102. Voitovich, A.M. and Afonin, V.Yu., Small vertebrates of natural populations in the system of ecological-genetic monitoring, Materialy Mezhdunarodnoi konferentsii “Ekologiya i ratsional’noe prirodopol’zovanie na rubezhe vekov” (Proc. Int. Conf. “Ecology and Rational Nature Management in the Turn of Centuries”), Tomsk, 2000, vol. 2, pp. 35–36.

  103. Voitovich, A.M., Comparative dose loads on amphibians in areas contaminated with radionuclides and under acute exposure, Materialy Mezhdunarodnoi konferentsii, posvyashchennoi 100-letnei godovshchine so dnya rozhdeniya N.V. Timofeeva-Resovskogo (Proc. Int. Conf. Dedicated to the 100th Anniversary of N.V. Timofeev-Resovskii), Minsk, 2000, pp. 130–132.

  104. Afonin, V.Yu., Comparative analysis of apoptosis and cytogenetic damages in heterogenic cell populations of hematopoietic tissue of animals from ecologically different regions of Belarus, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Minsk, 2002.

  105. Voitovich, A.M., Bone tumors of the common frog (Rana temporaria L.) during contamination of environment with radionuclides, Dokl. Nats. Akad. Nauk Bel., 2001, vol. 45, no. 1, pp. 91–94.

    Google Scholar 

  106. Abramov, V.I., Dineva, S.B., Rubanovich, A.V., and Shevchenko, V.A., Genetic consequences of radioactive contamination of Arabidopsis thaliana populations growing in the 30-km zone of the Chernobyl accident, Radiats. Biol., Radioekol., 1995, vol. 35, no. 5, pp. 676–689.

    CAS  Google Scholar 

  107. Abramov, V.I., Fedorenko, O.M., and Shevchenko, V.A., Genetic consequences of radioactive contamination for populations of Arabidopsis, Sci. Total Environ., 1992, vol. 112, pp. 19–28.

    Article  CAS  PubMed  Google Scholar 

  108. Kovalchuk, I., Abramov, V., Pogribny, I., and Kovalchuk, O., Molecular aspects of plant adaptation to life in the Chernobyl zone, Plant Physiol., 2004, vol. 135, pp. 357–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Klubikova, K., Danchenko, M., Skultety, L., et al., Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism, PLoS One, 2012, vol. 7, p. E48169.

    Article  Google Scholar 

  110. Boubriak, I.I., Grodzinsky, D.M., Polischuk, V.P., et al., Adaptation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl, Ann. Bot., 2008, vol. 101, pp. 267–276.

    Article  CAS  PubMed  Google Scholar 

  111. Syomov, A.B., Ptitsyna, S.N., and Sergeeva, S.A., Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl, Sci. Total Environ., 1992, vol. 112, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  112. Golubev, A., Afonin, V., Maksimova, S., and Androsov, V., The current state of pond snail Lymnaea stagnalis (Gastropoda, Pulmonata) populations from water reservoirs of the Chernobyl nuclear accident zone, Radioprotection, 2005, vol. 40, pp. S511–S517.

    Article  Google Scholar 

  113. Bonisoli-Aquati, A., Ostermiller, S., De Beasley, A.E., et al., Faster development ovaries with higher DNA damage in grasshoppers (Chorthippus albomarginatus) from Chernobyl, Physiol. Biochem. Zool., 2018, vol. 91, pp. 776–787.

    Article  Google Scholar 

  114. Tsytsugin, V.G. and Polikarpov, G.G., Cytogenetic and population effects in oligochaetes from the Chernobyl accident zone, Radiats. Biol., Radioekol., 2000, vol. 40, no. 2, pp. 226–230.

    Google Scholar 

  115. Grodzinskii, D.M., Adaptivnaya strategiya fiziologicheskikh protsessov rastenii (Adaptive Strategy of Plant Physiological Processes), Kiev: Naukova Dumka, 2013.

  116. Glazko, T.T., Grodzinskii, D.M., and Glazko, V.I., Chronic low-dose irradiation and multifactorial adaptation, Radiats. Biol., Radioekol., 2006, vol. 46, no. 4, pp. 488–493.

    CAS  Google Scholar 

  117. Mustonen, V., Kesaniemi, J., Lavrinenko, A., et al., Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses, BMC Cell Biol., 2018, vol. 19, p. 17.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gálvan, I., Bonisoli-Alquati, A., Jenkinson, S., et al., Chronic exposure to low-dose radiation at Chernobyl favors adaptation to oxidative stress in birds, Funct. Ecol., 2014, vol. 28, pp. 1387–1403.

    Article  Google Scholar 

  119. Il’enko, A.I. and Krapivko, T.P., Results of radioecological monitoring of the bank vole population after the Chernobyl accident, Zool. Zh., 1998, vol. 77, no. 1, pp. 108–116.

    Google Scholar 

  120. Glazko, V.I. and Glazko, T.T., Population-genetic consequences of Chernobyl accedent: a new factor of evolution, S-kh. Biol., 2006, no. 4, pp. 20–32.

  121. Fesenko, S.V., Alexakhin, R.M., Geras’kin, S.A., et al., Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant, J. Environ. Radioact., 2005, vol. 80, pp. 1–25.

    Article  CAS  PubMed  Google Scholar 

  122. Arkhipov, N.P., Kuchma, N.D., Askbrant, S., et al., Acute and long-term effects of irradiation on pine (Pinus sylvestris) stands post-Chernobyl, Sci. Total Environ., 1994, vol. 157, pp. 383–386.

    Article  CAS  PubMed  Google Scholar 

  123. Bird, G.A., Thompson, P.A., MacDonald, D.R., and Sheppard, S.C., Ecological risk assessment approach for the regulatory assessment of the effects of radionuclides released from nuclear facilities, in Protection of the Environment from Ionizing Radiation: Report CSP-17, Vienna: Int. At. Energy Agency, 2003, pp. 241–247.

  124. Andersson, P., Garnier-Laplace, J., Beresford, N.A., et al., Protection of the environment from ionizing radiation in a regulatory context (protect): proposed numerical values, J. Environ. Radioact., 2009, vol. 100, pp. 1100–1108.

    Article  CAS  PubMed  Google Scholar 

  125. Beresford, N.A., Scott, E.M., and Copplestone, D., Field effects studies in the Chernobyl Exclusion Zone: lessons to be learnt, J. Environ. Radioact., 2020, vol. 211, art. ID 105893.

    Article  CAS  PubMed  Google Scholar 

  126. Beresford, N.A., Barnett, C.L., Gashchak, S., et al., Radionuclide transfer to wildlife at a “reference site” in the Chernobyl Exclusion Zone and resultant radiation exposures, J. Environ. Radioact., 2020, vol. 211, art. ID 105661.

    Article  CAS  PubMed  Google Scholar 

  127. Crisp, P.A., Ganguly, D., Elchten, S.R., et al., Reconsidering plant memory: intersections between stress recovery, RNA turnover, end epigenetics, Sci. Adv., 2016, vol. 2, p. e1501340.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lecomte-Pradines, C., Adam-Guillermin, C., Gashchak, S., et al., More than thirty years after the Chernobyl accident: What do we know about the effects of radiation on the environment? J. Environ. Radioact., 2020, vol. 211, art. ID 106108.

    Article  CAS  PubMed  Google Scholar 

  129. Omar-Nazir, L., Shi, X., Moller, A., et al., Long-term effects of ionizing radiation after the Chernobyl accident: possible contribution of historic dose, Environ. Res., 2018, vol. 165, pp. 55–62.

    Article  CAS  PubMed  Google Scholar 

  130. Sapegin, L.M., Daineko, N.M., and Timofeev, S.F., The state of vegetation of agroecosystems in the exclusion zone 20 years later of the Chernobyl accident, Radiats. Biol., Radioekol., 2008, vol. 48, no. 1, pp. 67–75.

    CAS  Google Scholar 

  131. Deryabina, T.G., Kuchmel, S.V., Nagorskaya, L.L., et al., Long-term census data reveal abundant wildlife populations at Chernobyl, Curr. Biol., 2015, vol. 25, pp. R824–R826.

    Article  CAS  PubMed  Google Scholar 

  132. Baker, R.J. and Chesser, R.K., The Chornobyl nuclear disaster and subsequent creation of a wildlife preserve, Environ. Toxicol. Chem., 2000, vol. 19, pp. 1231–1232.

    Article  CAS  Google Scholar 

  133. Krivolutskii, D.A., Problems of sustainable development and ecological indication of radioactivelly contaminated lands, Ekologiya, 2000, no. 4, pp. 257–262.

  134. Buntova, E.G. and Rudenskaya, G.A., Ecological state of biocenoses of the Chernobyl exclusion zone 20 years after the accident, Radiats. Biol., Radioekol., 2009, vol. 49, no. 2, pp. 228–233.

    CAS  Google Scholar 

  135. Boiko, A.L., The influence of environmental factors on viruses of plants, S-kh. Biol., 1989, no. 5, pp. 120–125.

  136. Ioshchenko, V.I., Kashparov, V.A., Levchuk, S.E., et al., Effects of chronic irradiation of Scots pine (Pinus sylvestris L.) in Chernobyl Exclusion Zone, Radiats. Biol., Radioekol., 2010, vol. 50, no. 6, pp. 632–641.

    CAS  Google Scholar 

  137. Oleksyk, T.K., Novak, J.M., Purdue, J.R., et al., High levels of fluctuating asymmetry in populations of Apodemus   flavicollis from the most contaminated areas in Chernobyl, J. Environ. Radioact., 2004, vol. 73, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Geras’kin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geras’kin, S.A., Fesenko, S.V., Volkova, P.Y. et al. What Have We Learned about the Biological Effects of Radiation from the 35 Years of Analysis of the Consequences of the Chernobyl NPP Accident?. Biol Bull Russ Acad Sci 48, 2105–2126 (2021). https://doi.org/10.1134/S1062359021120050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021120050

Keywords:

Navigation