Skip to main content
Log in

Fluctuating Asymmetry and Morphogenetic Correlations of the Masticatory Surface Patterns of m1 in Gray Voles (Rodentia, Arvicolinae)

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

We analyzed the relationships between the modularity and integration of the morphotypic variability of the first lower molar (m1) in gray voles, Microtus s. l., based on fluctuating asymmetry data. In total, 5500 pairs of masticatory surface outlines of the left and right first lower molar m1 were studied. Fifty-seven different morphotypes and 229 of their various combinations were identified. The morphotypes were grouped in a contingency table. The frequencies of morphotypes symmetric with respect to the main diagonal in the table were averaged in order to identify the fluctuating asymmetry. Table rows were normalized for the sum; i.e., the frequencies of the occurrence of each morphotype in a pair with all morphotypes including its own were calculated. A matrix of Cavalli-Sforza–Edwards distances between rows in this table was calculated, and Ward’s cluster analysis was applied. Cluster analysis showed the existence of five clusters differing in the degree of morphotype complexity. Clusters of the morphotypes corresponded to the species group of gray voles. The distances between the morphotypes inside the clusters were lower than the intercluster distances, indicating the presence of modularity in the system. The modules were formed by ontogenetic similarity as they were obtained from the data on the fluctuating asymmetry of morphotypes. The molar m1 morphological structure had its own modular structure consisting of two submodules corresponding to the morphogenetic mechanism of its complication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. For the East European vole, we studied the material stored only in the Siberian Zoological Museum, collected in natural habitats in three places: Gornyi Altai, Ongudai district (1974); Gornyi Altai, Chemal district, Iolgo Ridge (1974); Kemerovo oblast, Kemerovo district, Rudnichnyi pinewood (1997). According to the karyotyped samples, the distribution of the common vole in the Trans-Urals covers the territory to the east up to the Tomsk–Novosibirsk–Ongudai–Mongolian Altai line (Malygin, 1983). According to the data currently available, the East European vole lives east of this line (Moroldoev et al., 2017; Moroldoev and Kartavtseva, 2017), including the vicinity of Novosibirsk (Yakimenko and Kryukov, 1997). In Europe, in the cohabitation zone of sibling species, the East European vole prefers wetter and more closed habitats (Okulova et al., 2008; Baskevich et al., 2012). In the Chemal district of Altai, this vole was caught in the following biotopes: coniferous forest in a river valley, dry birch woodland and low-lying swampy meadow, and in Ongudai district, in a swampy forest, a deciduous forest, and a mountain meadow (Yudin et al., 1977), i.e., in biotopes uncharacteristic for the common vole. Considering the above, there is reason to believe that the material studied by us belongs to the East European vole. Therefore, the material analyzed earlier (Pozdnyakov, 2011) should be identified as belonging not to the common, but to the East European vole.

  2. The contingency tables for the m1 and M3 morphotypes of the root vole are given in the work of Kovaleva et al. (2002), and for the m1 morphotypes of ten gray vole species are given in an additional file to the article by Kovaleva et al. (2019: https://journals.eco-vector.com/ecolgenet/rt/metadata/9290/0).

REFERENCES

  1. Abramson, N.I. and Lisovskii, A.A., Subfamily Arvicolinae Gray, 1821, in Mlekopitayushchie Rossii: sistematiko-geograficheskii spravochnik (Mammals of Russia: Systematics-Geographical Handbook), Tr. Zool. Muz., Mosk. Gos. Univ., Moscow: KMK, 2012, vol. 52, pp. 220–276.

  2. Agadzhanyan, A.K., Small mammals of the Pliocene-Pleistocene of the Russian Plain, Tr. Paleontol. Inst., Ross. Akad. Nauk, 2009, vol. 289.

    Google Scholar 

  3. Agadzhanyan, A.K. and Erbaeva, M.A., Pozdnekainozoiskie gryzumy i zaitseobraznye territorii SSSR (Late Cenozoic Rodents and Lagomorphs in the USSR), Moscow: Nauka, 1983.

  4. Agresti, A., An Introduction to Categorical Data Analysis, Hoboken, NJ: Wiley, 2007.

    Book  Google Scholar 

  5. Angermann, R., Homological variability of molars in voles (Microtinae), in Problemy evolyutsii (Problems of Evolution), Novosibirsk: Nauka, 1973, vol. 3, pp. 104–118.

  6. Astaurov B.L., Hereditary changes of galters in Drosophila melanogaster, Zh. Eksp. Biol., 1927, vol. 3, nos. 1–2, pp. 1–61.

    Google Scholar 

  7. Bannikova, A.A., Lebedev, V.S., Lissovsk,y A.A., et al., Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence, Biol. J. Linn. Soc., 2010, vol. 99, no. 3, pp. 595–613.

    Article  Google Scholar 

  8. Baskevich, M.I., Okulova, N.M., Potapov, S.G., Mironova, T.A., Sapel’nikov, S.F., Sapel’nikova, I.I., Egorov, S.V., and Vlasov, A.A., New data on the distribution of sibling species and hybridization of 46-chromosomal forms of Microtus arvalis sensu lato (Rodentia, Arvicolinae) in Central Chernozem zone, Zool. Zh., 2012, vol. 91, no. 8, pp. 994–1005.

    Google Scholar 

  9. Bol’shakov, V.N., Vasil’eva, I.A., and Maleeva, A.G., Morfotipicheskaya izmenchivost’ zubov polevok (Morphotypic Variability of Vole Teeth), Moscow: Nauka, 1980.

  10. Bulygina, E., Mitteroecker, P., and Aiello, L., Ontogeny of facial dimorphism and patterns of individual development within one human, Am. J. Phys. Anthropol., 2006, vol. 131, no. 3, pp. 432–443.

    Article  CAS  PubMed  Google Scholar 

  11. Cavalli-Sforza, L.L. and Edwards, A.W., Phylogenetic analysis. Models and estimation procedures, Am. J. Hum. Genet., 1967, vol. 19, no. 3, pp. 233–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., and Courant, F., Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data, Ann. Zool. Fen., 1999, vol. 36, pp. 239–267.

    Google Scholar 

  13. Cheverud, J.M., Phenotypic, genetic, and environmental morphological integration in the cranium, Evolution, 1982, vol. 36, no. 3, pp. 499–516.

    Article  PubMed  Google Scholar 

  14. Dongen, S.V., Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future, J. Evol. Biol., 2006, vol. 19, no. 6, pp. 1727–1743.

    Article  CAS  PubMed  Google Scholar 

  15. Ehrich, T.H., Vaughn, T.T., Koreishi, S.F., et al., Pleiotropic effects on mandibular morphology, I. Developmental morphological integration and differential dominance, J. Exp. Zool., B, 2003, vol. 296, no. 1, pp. 58–79.

  16. Epigenetics: Linking Genotype and Phenotype in Development and Evolution, Hallgrímsson, B., and Hall, B.K., Eds., Berkeley, CA: Univ. of California Press, 2011.

    Google Scholar 

  17. Eremina, I.V., Polymorphism of the chewing surface of molars of the common vole, in Fiziologicheskaya i populyatsionnaya ekologiya zhivotnykh (Physiological and Population Ecology of Animals), Saratov: Sarat. Gos. Univ., 1974, no. 2 (4), pp. 77–91.

  18. Erofeeva, E.A., Effect of lead on leaf asymmetry in pea (Pisum sativum L.), Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2014, no. 1, pp. 162–165.

  19. Esteve-Altava, B., In search of morphological modules: a systematic review, Biol. Rev., 2017, vol. 92, no. 3, pp. 1332–1347.

    Article  PubMed  Google Scholar 

  20. Floris, G., Palmar intertriradial ridge counts in Sardinians, Adv. Anthropol., 2015, vol. 5, no. 3, pp. 137–143.

    Article  Google Scholar 

  21. Galaktionov, O.K., Efimov, V.M., Lemza, S.V., and Goltsova, T.V., Principal components method and nonmetric two dimensional scaling method for quantitative dermatoglyphic traits of the Taimyr aborigines, Am. J. Phys. Anthropol., 1982, vol. 58, no. 1, pp. 21–26.

    Article  Google Scholar 

  22. Gileva, E.A., Yalkovskaya, L.E., Borodin, A.V., Zykov, S.V., and Kshnyasev, I.A., Fluctuating asymmetry of craniometric characters in rodents (Mammalia: Rodentia): interspecific and interpopulational comparisons, Zh. Obshch. Biol., 2007, vol. 68, no. 3, pp. 221–230.

    CAS  PubMed  Google Scholar 

  23. Gordeeva, I.V., The coefficient of fluctuating asymmetry of the leaf plate as an indicator of total environmental stress, Usp. Sovrem. Nauki, 2016, vol. 9, no. 12, pp. 105–109.

    Google Scholar 

  24. Goswami, A. and Polly, P.D., Methods for studying morphological integration, modularity and covariance evolution, in The Paleontological Society Papers, Vol. 16: Quantitative Methods in Paleobiology, Cambridge: Cambridge Univ. Press, 2010, pp. 213–243.

  25. Goswami, A., Smaers, J.B., Soligo, C., and Polly, P.D., The macroevolutionary consequences of phenotypic integration: from development to deep time, Philos. Trans. R. Soc. B, 2014, vol. 369, no. 1649, art. ID 20130254.

  26. Graham, J. H., Shimizu, K., and Emlen, J.M., Growth models and the expected distribution of fluctuating asymmetry, Biol. J. Linn. Soc., 2003, vol. 80, no. 1, pp. 57–65.

    Article  Google Scholar 

  27. Graham, J.H., Raz, S., Hel-Or, H., and Nevo, E., Fluctuating asymmetry: methods, theory, and applications, Symmetry, 2010, vol. 2, no. 2, pp. 466–540.

    Article  Google Scholar 

  28. Gromov, I. M. and Erbaeva, M.A., Mlekopitayushchie fauny Rossii i sopredel’nykh territorii. Zaitseobraznye i gryzuny (Mammal Fauna of Russia and Adjacent Territories. Lagomorphs and Rodents), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 1995.

  29. Hammer, Ø., Harper, D.A., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9.

    Google Scholar 

  30. Jacobi4.ru. http://www.jacobi4.ru/. Accessed July 16, 2019.

  31. Kharlamova, A.V., Trut, L.N., Chase, K., et al., Directional asymmetry in the limbs, skull and pelvis of the silver fox (V. vulpes), J. Morphol., 2010, vol. 271, no. 12, pp. 1501–1508.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kellner, J.R. and Alford, R.A., The ontogeny of fluctuating asymmetry, Am. Nat., 2003, vol. 161, no. 6, pp. 931–947.

    Article  PubMed  Google Scholar 

  33. Kimmel, C.B., Hohenlohe, P.A., Ullmann, B., et al., Developmental dissociation in morphological evolution of the stickleback opercle, Evol. Dev., 2012, vol. 14, no. 4, pp. 326–337.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Klingenberg, C.P., Developmental instability as a research tool: using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration, in Developmental Instability: Causes and Consequences, Polak, M., Ed., Oxford: Oxford Univ. Press, 2003, vol. 427, p. 442.

    Google Scholar 

  35. Klingenberg, C.P., Morphological integration and developmental modularity, Annu. Rev. Ecol. Evol. Syst., 2008, vol. 39, pp. 115–132.

    Article  Google Scholar 

  36. Klingenberg, C.P., Studying morphological integration and modularity at multiple levels: Concepts and analysis, Philos. Trans. R. Soc. B, 2014, vol. 369, no. 1649, art. ID 20130249.

  37. Klingenberg, C.P., Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications, Symmetry, 2015, vol. 7, no. 2, pp. 843–934.

    Article  Google Scholar 

  38. Klingenberg, C.P., Mebus, K., and Auffray, J.-C., Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible?, Evol. Dev., 2003, vol. 5, no. 5, pp. 522–531.

    Article  PubMed  Google Scholar 

  39. Kolchanov, N.A. and Suslov, V.V., Coding and evolution of the complexity of biological organization, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 60–96.

  40. Kovaleva, V.Yu., Pozdnyakov, A.A., and Efimov, V.M., The variability of morphotypes of molars of tundra vole (Microtus oeconomus) determined through the bilateral asymmetry, Zool. Zh., 2002, vol. 81, no. 1, pp. 111–117.

    Google Scholar 

  41. Kovaleva, V.Ya., Efimov, V.M., and Litvinov, Yu.N., Directional asymmetry of morphological traits during postnatal ontogeny in root vole Microtus oeconomus Pall. (Rodentia, Cricetidae), J. Sib. Fed. Univ., Biol., 2013, vol. 2, no. 6, pp. 115–129.

    Google Scholar 

  42. Kovaleva, V.Yu., Pozdnyakov, A.A., Litvinov, Yu.N., and Efimov, V.M., Estimation of the congruence between morphogenetic and molecular-genetic modules of gray voles Microtus s.l. variability along a climatic gradient, Ekol. Genet., 2019, vol. 17, no. 2, pp. 21–34.

    Article  Google Scholar 

  43. Kozlov, M.V., Plant studies on fluctuating asymmetry in Russia: mythology and methodology, Russ. J. Ecol., 2017, vol. 48, no. 1, pp. 1–9.

    Article  Google Scholar 

  44. Kullback, S., Information Theory and Statistics, New York: Wiley, 1959.

    Google Scholar 

  45. Kuratani, S., Modularity, comparative embryology and Evo–Devo: developmental dissection of evolving body plans, Dev. Biol., 2009, vol. 332, no. 1, pp. 61–69.

    Article  CAS  PubMed  Google Scholar 

  46. Labonne, G., Navarro, N., Laffont, R., et al., Developmental integration in a functional unit: deciphering processes from adult dental morphology, Evol. Dev., 2014, vol. 16, no. 4, pp. 224–232.

    Article  PubMed  Google Scholar 

  47. Lissovsky, A.A., Kadetova, A.A., and Obolenskaya, E.V., Morphological identification of the East Asian voles Alexandromys species (Rodentia, Cricetidae) of Russia and neighboring territories, Biol. Bull. (Moscow), 2018, vol. 45, no. 8, pp. 872–883.

    Article  Google Scholar 

  48. Magwene, P.M., New tools for studying integration and modularity, Evolution, 2001, vol. 55, no. 9, pp. 1734–1745.

    CAS  PubMed  Google Scholar 

  49. Maleeva, A.G., Comparison of morphotypic variability of teeth of Arvicola terrestris L. and Lagurus lagurus Pall., in Fauna Urala i Evropeiskogo Severa (Fauna of Ural and the European North), Sverdlovsk, 1975, no. 4, pp. 42–49.

  50. Maleeva, A.G., Tooth variability in voles (Microtinae), in Evolyutsiya gryzunov i istoriya formirovaniya ikh sovremennoi fauny (The Evolution of Rodents and the History of the Development of Their Modern Fauna), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1976, pp. 48–57.

  51. Maleeva, A.G., Symmetry and asymmetry of the chewing surface of molars in voles by an example of steppe lemming (Lagurus lagurus Pall.), in Morfologiya i sistematika mlekopitayushchikh (Morphology and Taxonomy of Mammals), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1982, pp. 23–37.

  52. Malygin, V.M., Sistematika obyknovennykh polevok (Taxonomy of the Common Voles), Moscow: Nauka, 1983.

  53. Mirkin, B.G., Analiz kachestvennykh priznakov i struktur (Analysis of Qualitative Features and Structures), Moscow: Statistika, 1980.

  54. Mitteroecker, P. and Bookstein, F.L., The conceptual and statistical relationship between modularity and morphological integration, Syst. Biol., 2007, vol. 56, no. 5, pp. 818–836.

    Article  PubMed  Google Scholar 

  55. Mitteroecker, P., Gunz, P., and Bookstein, F.L., Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes, Evol. Dev., 2005, vol. 7, no. 3, pp. 244–258.

    Article  PubMed  Google Scholar 

  56. Moroldoev, I.V. and Kartavtseva, I.V., New data on invasion of East European vole (Microtus rossiaemeridionalis) east of Ulan-Ude city, Vestn. Buryat. Gos. Univ., Biol., Geogr., 2017, no. 3, pp. 130–134.

  57. Moroldoev, I.V., Sheremetyeva, I.N., and Kartavtseva, I.V., The first finding of East European vole (Microtus rossiaemeridionalis) in Buryatia, Russ. J. Biol. Invasions, 2017, vol. 8, no. 3, pp. 266–271.

    Article  Google Scholar 

  58. Murren, C.J., The integrated phenotype, Integr. Comp. Biol., 2012, vol. 52, no. 1, pp. 64–76.

    Article  PubMed  Google Scholar 

  59. Olson, E.C. and Miller, R.L., Morphological Integration, Chicago: Univ. of Chicago Press, 1958.

    Google Scholar 

  60. Okulova, N.M., Sapel’nikov, S.F., Baskevich, M.I., Vlasova, O.P., Maiorova, A.D., Egorov, S.V., Mironova, T.A., and Sarychev, V.P., Comparative ecology of three forms of common voles Microtus arvalis sensu lato in Central Chernozem zone, Nauchn. Ved. Belgorod. Gos. Univ., Estestv. Nauki, 2008, vol. 3, no. 6, pp. 128–139.

    Google Scholar 

  61. Palmer, A.R., From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 25, pp. 14279–14286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palmer, A.R. and Strobeck, C., Fluctuating asymmetry: measurement, analysis, patterns, Ann. Rev. Ecol. Syst., 1986, vol. 17, no. 1, pp. 391–421.

    Article  Google Scholar 

  63. Palmer, A.R. and Strobek, C., Fluctuating asymmetry analyses revisited, in Developmental Instability: Causes and Consequences, Oxford: Oxford Univ. Press, 2003, pp. 279–319.

    Google Scholar 

  64. Parsons, P.A., Fluctuating asymmetry as a epigenetic measure of stress, Biol. Rev., 1990, vol. 65, no. 2, pp. 131–145.

    Article  CAS  PubMed  Google Scholar 

  65. Parsons, P.A., Fluctuating asymmetry: a biological monitor of environmental and genomic stress, Heredity, 1992, vol. 68, no. 4, pp. 361–364.

    Article  PubMed  Google Scholar 

  66. Pigliucci, M., Phenotypic integration: studying the ecology and evolution of complex phenotypes, Ecol. Lett., 2003, vol. 6, no. 3, pp. 265–272.

    Article  Google Scholar 

  67. Polunin, D., Shtaiger, I., and Efimov, V., JACOBI4 software for multivariate analysis of biological data, bioRxiv, 2019, 803684.

  68. Pozdnyakov, A.A., Morphotypic variability of the chewing surface of the molars of voles of the “maximowiczi” group (Rodentia, Arvicolidae): quantitative statistical analysis, Zool. Zh., 1993, vol. 72, no. 11, pp. 114–125.

    Google Scholar 

  69. Pozdnyakov, A.A., Taxonomic interpretation of morphological variability by the example of gray voles (Microtus s. lato, Rodentia), Zh. Obshch. Biol., 1995, vol. 56, no. 2, pp. 172–178.

    Google Scholar 

  70. Pozdnyakov, A.A., Phylogeny of voles of the subgenus Alexandromys Ognev (Rodentia, Arvicolidae, Microtus): variability and paleontological data, Zool. Zh., 1996, vol. 75, no. 1, pp. 133–140.

    Google Scholar 

  71. Pozdnyakov, A.A., The structure of morphotypic variability of gray voles (Microtus: Rodentia, Arvicolidae) from the point of view of the epigenetic theory of evolution, Usp. Sovrem. Biol., 2007, vol. 127, no. 4, pp. 416–424.

    Google Scholar 

  72. Pozdnyakov, A.A., Morphological diversity: characteristics, structure, and analysis, in Soobshchestva i populyatsii zhivotnykh: ekologicheskii i morfologicheskii analiz (Communities and Populations of Animals: Ecological and Morphological Analysis), Tr. Inst. Sist. Ekol. Zhivotn., Sib. Otd., Ross. Akad. Nauk, Moscow: KMK, 2010, no. 46, pp. 133–157.

  73. Pozdnyakov, A.A., The structure of morphological variability (with the masticatory surface morphotypes of the lower first molar in the voles as an example), Biol. Bull. Rev., 2011, vol. 1, no. 5, pp. 471–481.

    Article  Google Scholar 

  74. Pozdnyakov, A.A. and Senotrusova, M.M., Analysis of the morphotypic variability of the steppe vole, Byull. Mosk. O‑va Ispyt. Prir., Otd. Biol., 2006, vol. 111, no. 3, pp. 18–23.

    Google Scholar 

  75. Rabeder, G., Die Arvicoliden (Rodentia, Mammalia) aus dem Pliozän und dem älteren Pleistozän von Niederösterreich, Beitr. Paläontol. Österr., 1981, vol. 8, pp. 1–373.

    Google Scholar 

  76. Raff, R.A. and Sly, B.J., Modularity and dissociation in the evolution of gene expression territories in development, Evol. Dev., 2000, vol. 2, no. 2, pp. 102–111.

    Article  CAS  PubMed  Google Scholar 

  77. Rakhmangulov, R.S., Ishbirdin, A.R., and Salpagarova, A.S., Is fluctuating asymmetry an indicator of destabilization or adaptive morphogenesis?, Vestn. Bashkir. Gos. Univ., 2014, vol. 19, no. 3, pp. 831–834.

    Google Scholar 

  78. Rasskin-Gutman, D. and Esteve-Altava, B., Connecting the dots: anatomical network analysis in morphological Evo-Devo, Biol. Theory, 2014, vol. 9, no. 2, pp. 178–193.

    Article  Google Scholar 

  79. Rekovets, L.I., Melkie mlekopitayushchie antropogena yuga Vostochnoi Evropy (Small Mammals of Anthropogen of the South of Eastern Europe), Kiev: Naukova Dumka, 1994.

  80. Renaud, S., Alibert, P., and Auffray, J.-C., Modularity as a source of new morphological variation in the mandible of hybrid mice, BMC Evol. Biol., 2012, vol. 12, no. 1, pp. 141.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schlosser, G., Modularity and the units of evolution, Theor. Biosci., 2002, vol. 121, no. 1, pp. 1–80.

    Article  Google Scholar 

  82. Shishkin, M.A., Development and lessons of evolutionism, Russ. J. Dev. Biol., 2006, vol. 37, no. 3, pp. 146–162.

    Article  Google Scholar 

  83. Shishkin, M.A., Systemic grounds of morphogenesis and their manifestation in the fossil record, Paleontol. J., 2012, vol. 46, no. 4, pp. 331–342.

    Article  Google Scholar 

  84. Smirnov, N.G. and Benenson, I.E., The canonical analysis of variability of chewing surface pattern M1 of European water vole (Arvicola terrestris L.), in Vnutri- i mezhpopulyatsionnaya izmenchivost’ mlekopitayushchikh Urala (Intra- and Interpopulation Variability of Mammals in Ural), Sverdlovsk: Inst. Ekol. Rast. Zhivotn., Akad. Nauk SSSR, 1980, pp. 11–17.

  85. van Valen, L.A., Study of fluctuating asymmetry, Evolution, 1962, vol. 16, no. 2, pp. 125–142.

  86. Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Fundamentals of Phenetics: Towards Population Meronomy), Yekaterinburg: Akademkniga, 2005.

  87. Vasil’ev, A.G., Phenogenetic variability and population meronomy, Zh. Obshch. Biol., 2009, vol. 70, no. 3, pp. 195–209.

    PubMed  Google Scholar 

  88. Vasil’ev, A.G. and Vasil’eva, I.A., Gomologicheskaya izmenchivost’ morfologicheskikh struktur i epigeneticheskaya divergentsiya taksonov: osnovy populyatsionnoi meronomii (Homological Variability of Morphological Structures and Epigenetic Divergence of Taxa: Principles of Population Meronomy), Moscow: KMK, 2009.

  89. Vershinin, V.L., Gileva, E.A., and Glotov, N.V., Fluctuating asymmetry of measurable parameters in Rana arvalis: methodology, Russ. J. Ecol., 2007, vol. 38, no. 3, pp. 72–74.

    Article  Google Scholar 

  90. Voyta L.L., Golenishchev, F.N., and Tiunov, M.P., Analysis of shape and size variation of the first lower molar in the Far-Eastern grey voles of genus Alexandromys (Rodentia: Cricetidae) from Russian fauna using geometric morphometrics, Russ. J. Theriol., 2013, vol. 12, no. 1, pp. 19–32.

    Article  Google Scholar 

  91. Wagner, G.P., Homologues, natural kinds and the evolution of modularity, Am. Zool., 1996, vol. 36, no. 1, pp. 36–43.

    Article  Google Scholar 

  92. Wagner, G.P. and Altenberg, L., Complex adaptations and the evolution of evolvability, Evolution, 1996, vol. 50, no. 3, pp. 967–976.

    Article  PubMed  Google Scholar 

  93. Wagner, G.P., Pavlicev, M., Cheverud, J., et al., The road to modularity, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 921–931.

    Article  CAS  PubMed  Google Scholar 

  94. Ward, J.H., Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 1963, vol. 58, no. 301, pp. 236–244.

    Article  Google Scholar 

  95. Winther, R.G., Varieties of modules: kinds, levels, origins, and behaviors, J. Exp. Zool., 2001, vol. 291, no. 2, pp. 116–129.

    Article  CAS  PubMed  Google Scholar 

  96. Yakimenko, L.V. and Kryukov, A.P., Karyotype variability of East European vole Microtus rossiaemeridionalis (Rodentia, Cricetidae), Zool. Zh., 1997, vol. 76, no. 3, pp. 375–378.

    Google Scholar 

  97. Yalkovskaya, L.E., Borodin, A.V., and Fominykh, M.A., Modular approach to studying the fluctuating asymmetry of complex morphological structure in rodents on the mandible of the bank vole (Clethrionomys glareolus Schreber, 1780) as an example, Biol. Bull. Rev., 2015, vol. 5, no. 3, pp. 259–266.

    Article  Google Scholar 

  98. Yalkovskaya, L.E., Fominykh, M.A., Mukhacheva, S.V., Davydova, Yu.A., and Borodin, A.V., Fluctuating asymmetry of rodent cranial structures in an industrial pollution gradient, Russ. J. Ecol., 2016, vol. 47, no. 3, pp. 281–288.

    Article  Google Scholar 

  99. Yudin, B.S., Potapkina, A.F., Galkina, L.I., and Polovinkina, R.A., Ecological-faunistic analysis of the population of small mammals (Micromammalia) in Central Altai, in Fauna i sistematika pozvonochnykh Sibiri (Fauna and Taxonomy of Siberian Vertebrates), Tr. Biol. Inst., Novosibirsk: Nauka, 1977, no. 31, pp. 5–31.

  100. Zakharov, V.M., Asimmetriya zhivotnykh: populyatsionno-fenogeneticheskii podkhod (Animal Asymmetry: A Population-Phenogenetic Approach), Moscow: Nauka, 1987.

  101. Zakharov, V.M., Ontogeny and population: developmental stability and population variation, Russ. J. Ecol., 2001, vol. 32, no. 3, pp. 146–150.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors sincerely thank the unknown referee, whose persistent efforts have contributed to bringing the article to a form more understandable for the reader.

Funding

This study was supported by the Program of Basic Scientific Research (BSR) of the State Academies of Sciences for 2013–2020, project no. VI.51.1.4. (AAAA-A16-116121410119-4), including material from the collection of the Siberian Zoological Museum, Novosibirsk, and the Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, supported by the program of bioresource collections of the Federal Agency of Scientific Organizations of Russia AAAA-A17-117101070002-6. Statistical data analysis (BME) was supported by the Russian Foundation for Basic Research, project no. 19-07-00658-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Kovaleva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, V.Y., Pozdnyakov, A.A., Litvinov, Y.N. et al. Fluctuating Asymmetry and Morphogenetic Correlations of the Masticatory Surface Patterns of m1 in Gray Voles (Rodentia, Arvicolinae). Biol Bull Russ Acad Sci 48, 1609–1622 (2021). https://doi.org/10.1134/S1062359021090119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021090119

Keywords:

Navigation